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1.  Introduction

More than 50 years after Anderson’s seminal work on local-
ization [1], the problem remains of current interest. Due to the 
complexity introduced by the crucial role of disorder, a full 
analytical treatment of the problem remains elusive, even for 
noninteracting systems. Interacting systems present a renewed 
interest due to the many-body localization proposal [2], pre-
dicting an interaction driven metal-insulator transition in the 
otherwise localized phase.

An important idea that influenced the whole field was 
single-parameter scaling (SPS) [3]. Assuming that the locali-
zation length ξ is the only relevant length in the problem, 
it is possible to argue that one-dimensional (1D) and two-
dimensional (2D) systems always flow, in the renormalization 
group sense, towards the strongly localized regime. The SPS 
assumption leads to universal results for the full conductance 
distribution ξ( )f g L, / , where g is the conductance and L the 
system size. This assumption becomes natural at the Anderson 
transition where the localization length diverges, but the same 
universality should be expected as long as ξ is much longer 

than other microscopic lengths in the system. This idea has 
been checked analytically for 1D systems, where the distribu-
tion is log-normal and in the SPS limit [4] σ μ=2 , where σ2 
is the variance and μ the mean of the distribution. It has also 
been tested numerically for several 1D and 2D systems [5]. In 
this context, it is important to know if interacting systems are 
in the same universality class as non interacting systems. An 
analytical treatment of the problem is essentially impossible 
up to date and a numerical diagonalization study is limited to 
very small system sizes, so no reliable distribution function of 
conductance can be obtained.

An interesting route has been applied to non interacting 
systems with great success. The main idea is that the localiza-
tion length itself is an irrelevant variable, in the renormaliza-
tion group sense, as the system flows to the fixed point ξ →L/ 0. 
We can expect that universality emerges as we approach this 
fixed point. In order to obtain the corresponding universal dis-
tribution we can work with a system very near this fixed point. 
Starting with an Anderson model, it is possible to calculate the 
Green function (GF) via a locator expansion and keep only 
the lowest order terms (which correspond to considering only 
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forward-scattering paths). This type of approach was used by 
Nguyen et al [6] for single-particle propagation, although they 
were mainly interested in studying the magnetoresistance and 
not the conductance distribution function. It was also applied 
to 2D systems by Medina and Kardar [7], who showed that the 
variance of glog  grows with system size as L2/3, result which 
was later confirmed for the Anderson model [8]. It is easy to 
show that, for 1D systems, this approach reproduces in a naive 
way the conductance log-normal distribution. For 2D systems, 
we were able to show that the universal conductance distribu-
tion function is a Tracy–Widom distribution that depends on 
boundary conditions. We analyzed the cases of narrow and 
wide leads [9, 10] and also a half-plane system [11]. The appli-
cability of these universal distributions to the Anderson model 
in the strongly localized regime was confirmed in all cases.

In this paper we apply the previous ideas to study the local-
ized regime of an interacting system in 1D. As we are dealing 
with a many-body system, the forward-scattering paths 
approach has to be performed in configuration space, which is 
not a trivial task and its practical implementation constitutes 
on of the main aims of this work. In the next section we pre-
sent the model employed, and in section 3 we develop a proce-
dure to calculate the leading contribution to the single-particle 
GF of the many-body system. We then demonstrate, in sec-
tion 4, that the GF can be factorized when there is no effec-
tive interaction in a link of the system. We present numerical 
results in section 5 and compare our predictions with results 
obtained with exact diagonalization for small system sizes. In 
section 6 we present a practical way to implement our method 
approximately. We end up this paper with a discussion of the 
results and extracting some conclusions.

2.  Model

We are interested in calculating the d.c. conductance, g, for a 
localized system at zero temperature. It can be obtained from 
the Landauer formula [12] = {Γ Γ }g G Gtr R A , in units of e2/h, 
where GR (GA) is the retarded (advanced) GF and Γ the cou-
pling of the system to the lead. This expression was deduced 
for noninteracting systems, but remains valid for interacting 
systems at zero temperature [13]. ω= ( )′G G r r, ,R R  is the 
Fourier transform of the time dependent one-particle retarded 
GF, defined as [14]

( ) = − ⟨˜ ( ) ˜ ( ) + ˜ ( ) ˜ ( )⟩ >
= <

′ ′ ′ ′
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G x t y t c t c t c t c t t t

t t

, ; , i if 

0 if 
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† †

where ˜ ( )c tx  and ˜ ( )c tx
†  are annihilation and creation operators, 

respectively, of a particle at position x in time t in Heisenberg 
representation, and ⟨⋯⟩ refers to expected values in a given 
state, which in this work we usually consider to be the ground 
state ∣Ψ ⟩gs . So, we are interested in
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We assume that we are dealing with an N particle system, 
and include the number of particles of each quantity as a 

superscript just for clarity. ∣Ψ ⟩( )N
gs  and ( )E N

gs  are the ground state 
wave function and energy, respectively. Here cx (cx

†) annihi-
lates (creates) a particle at x. The sum over α (β) runs over 
all N   +   1 (N  −  1) particle states, and α

( + )E N 1  ( β
( − )E N 1 ) are their 

corresponding energies. We say that the first term in the RHS 
of (1) is the electron contribution to the GF, while the second 
term is the hole contribution.

For a system of N particles, we can define a retarded 
N-particle GF as

∏ ∏({ } { } ) = − ⟨ ∣ ˜ ( ) ˜ ( )∣ ⟩′ ′( )
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for >′t t and 0 otherwise. Its time Fourier transform is related 
to the N-particle Hamiltonian

ω ω δ({ } { } ) = [ − + ]( ) ( ) −G x y I H; ; i .N
i j

N 1
� (3)

From now on, we will restrict to 1D systems of interacting 
spinless fermions with a strong disorder, although most of the 
ideas can be easily extended to boson systems and to higher 
dimensions.

We define a discrete tight binding Hamiltonian
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where ϵx is the external random potential at site x, uniformly 
distributed in the range [−  W/2,W/2], t is the transfer energy, 
and U the interaction energy. We concentrate in the strongly 
localized regime where ≫U W t, .

We consider a many-body locator expansion 
= + Δ( ) ( ) ( )H H HN N N

0  where ΔH is the second (hopping) 
term in the RHS of (5) and ( )H N

0  is a classical interacting 
Hamiltonian. Then the N-particle GF obeys a Dyson equation

= + Δ
= + Δ

+ Δ Δ + …
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As G0 is diagonal
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G(N)turns out to be the sum of all possible paths in Hilbert 
space from point {xi} to point {yi}.

The single-particle GF, equation (1) can be written in terms 
of G(N+1) and G(N−1)

ω ω

ω

( ) = 〈Ψ ∣ ( + ) ∣Ψ 〉

−〈Ψ ∣ (− + ) ∣Ψ 〉

( ) ( + ) ( )

( ) ( − ) ( )

G x y c G E c

c G E c

, ;

,

N
y

N
x

N

N
x

N
y

N

R gs
1

gs
†

gs

gs
†

A
1

gs gs

� (6)

J. Phys.: Condens. Matter 27 (2015) 335503



A M Somoza et al

3

where ( − )G N
A

1  is the complex conjugate of G(N−1). Due to the 

presence of the wave function ∣Ψ ⟩( )N
gs , the representation of the 

GF in terms of paths is not straight forward, but it is feasible 
in the strongly localized regime, as we will see.

We are interested in the retarded many-body single-par-
ticle GF, but since the imaginary term, δi , will play a trivial 
role in our regime of interest, from now on we will not 
include it and we will also drop the subscript ‘R’ referring to 
the retarded GF.

3.  Directed path approach

The representation of the single-particle GF in terms of paths 
is much simpler in the limit →t 0. We will calculate G up to 
lowest order in t. In this approach only paths in configuration 
space where particles move from left to right, from an occu-

pied to empty site, are considered. The wave function ∣Ψ ⟩( )N
gs  

includes the classical ground state configuration (to zero order 
in t) plus additional contributions to all orders in t, which have 
to be properly taken into account. As particles are only allowed 
to hop to the right, the propagation process can be thought in a 
simple way. The initial and the final configurations correspond 
to the classical ground state, the incoming particle on the left 
must travel up to the position of the first particle of the system, 
which in turn will end up in the position of the second one, 
and so on. The last particle will have to move to the right end 
of the system, where it will be removed. Insertion of a particle 
can take place in configurations with the first site empty, while 
removal can only occur when the final site is occupied. All 
hops, including the insertion and extraction of a particle, can 
take place in any possible order and the contributions from all 
paths in configuration space must be summed up to get the 
final GF. This arbitrariness in the order of the hops includes 
processes in which a particle is first removed from the final 
site and later inserted in the initial site, i.e. hole propagation.

The rules to calculate the contribution of each path are the 
following. Each time that an electron hops corresponds to a 
factor t and each time that a configuration α is visited to a 
factor

ηω + − α
η( ) ( + )E E

1
N N

gs
� (7)

where η is the difference in the number of particles of con-
figuration α and the initial configuration. Terms with η = 1 
(η = −1) come from particle (hole) propagation, i.e. the 
expansion of G(N+1) (G(N−1)) in the first (second) term in the 
RHS of (1). The terms with η = 0 arise from the expansion 

of ∣Ψ ⟩( )N
gs  in t, and can be viewed as hops occurring before the 

particle is inserted and after it is removed. Along any of the 
paths, the final result is that a particle has traveled from left 
to right or a hole from right to left, with the number of steps 
equal to the number of links between sites, after which the 
system returns to its original state. The energy of a configura-
tion is the sum of the disorder site energies ϵx of all occupied 
places plus an interaction energy U for each pair of occupied 
nearest neighbor sites.

In the absence of interactions, it is possible to prove that the 
sum of the contributions from all paths is equal to the expres-
sion of the one-particle GF, which in the strongly localized 
limit consists of a single term. Interactions modify the rela-
tive contributions of the different paths resulting in complex, 
although well controlled expressions, composed by more than 
one term.

Two examples of the implementation of the procedure for 
systems with two and three sites are shown in the next two 
subsection, respectively.

3.1. Two sites

Let us consider the simplest system consisting of just two sites 
and one electron. For the sake of concreteness, let us assume 
that in the ground state, to zero order in t, the first site is occu-
pied and the second one empty. We have to sum the contri-
bution of the two paths in configuration space schematically 
represented in figure  1, where each rectangle corresponds 
to a configuration and the lines are the possible transitions 
between configurations. Upwards lines represent the creation 
of a particle at the initial site 1, and downwards lines the anni-
hilation of a particle at L   =   2. The wavy line corresponds to 
a hop from one site to an adjacent one and contributes with a 
factor t. The two paths start with the jump of the particle at 1 
to 2. Then, one path consists in the injection of a particle at 
1 and the subsequent annihilation of a particle at 2, while in 
the other path the particle at 2 is annihilated first and a new 
particle is created at 1. Their contributions are

⎡
⎣⎢

⎤
⎦⎥ω

ϵ ϵ ω ϵ ω ϵ
ϵ ϵ

ω ϵ ω ϵ

( ) =
− − −

+
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( − − )(− + )

G
t
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t
U

U

1, 2;
1 1

1 /
.

1 2 2 1

1 2

2 1

� (8)

The non interacting case is recovered (up to a sign) when 
U   =   0.

3.2. Three sites

As a second more complex example, let us consider a system 
with three sites and in an initial configuration with a particle 

Figure 1.  Scheme of the configurations involved in the 
calculation of the GF for a system with two sites and one electron, 
originally placed at the first site. Each rectangle corresponds to 
a configuration. The red arrow marks the insertion of an electron at 
site 1, while the blue arrow signals the extraction of an electron at 
site 2, and the wavy arrow propagation by the hopping t.
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at site 2. The corresponding paths for this system are shown in 
figure 2, where the symbols are the same as in figure 1 Adding 
the contributions from the four paths corresponding to particle 
propagation, plus the path for hole propagation, one arrives at 
the GF

ω ϵ ω ϵ ω ϵ
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1 .
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2
2 1

1
2 3

1

2 1 3

�

(9)
The different terms in (10) take into account electron cor-

relations in the different possible paths and their complexity 
rapidly increases with system size, but we will see in the next 
section that under certain relevant circumstances the GF can 
be factorized.

4.  Factorization of the Green functions

Let us now consider a 1D system as the one represented in 
figure 3. We assume that there are no interactions between any 
site to the left of i (this site included) and any site to the right 
of i   +   1 (this site also included). We further suppose that the 
transfer energy t between sites i and i   +   1 is much smaller 
than the other energies of the problem and we are then inter-
ested in the calculation of the GF ω( )G L1, ;  to first order in t. 
In this section, we are going to expand the GF in terms of this 
particular t and the rest of transfer energies can take any value. 
We also remark that the two subsystems, from 1 to i and from 
i   +   1 to L, can have any interaction and do not have to neces-
sarily be in the strongly localized regime.

The system is in any eigenstate ∣Ψ⟩ of the total Hamiltonian, 
not necessarily the ground state. At zero order in t, this state 
can always be written as

ψ φ∣Ψ 〉 = ∣ 〉 ⊗ ∣ 〉( ) ( )N N
0 0 0

L R� (10)

NL (NR) indicates the number of particles in the left (right) 
subsystem, at zero order in t, and the total number of par-
ticles is = +N N NL R. We use the symbol ψ  (φ) to refer 

to wave functions on the left (right). The total energy is 
= +( ) ( )E E EN N

0 0 0
L R . The first order contribution to ∣Ψ⟩ is
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The sum in α (β) runs over all eigenstates in the left 
(right) side with −N 1L  ( −N 1R ) particles. The previous 
expression corresponds to a particle moving from left to 
right. There is a similar expression for a particle crossing in 
the opposite direction, but it does not contribute to the GF 
to lowest order in t.

We have to evaluate (1) to first order in t for our present 
system. The final result is a sum of six terms, three coming 
from the particle contribution to the GF, ω( + )( + ) ( )G EN N1

0 , and 
the other three from the hole contribution, ω(− + )( − ) ( )G EN N1

0 . 
The three terms of each set correspond to linear contributions 
from the bra wave function, from the GF and from the ket 
wave function, respectively. We have

ω ω
ω
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ω

ω
ω
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(12)

The first term on the RHS of (12) can be written as

( ) = ⟨Ψ ∣ Δ ∣Ψ ⟩( + ) ( + )c G HG cGF 1 N N
0 L 0

1
0

1
1
†

0� (13)

where Δ = − +H tc ci i1
† , and the argument of ( + )G N

0
1  is ω + ( )E N

0 . 
We can now use the spectral representation for ( + )G N

0
1 , equa-

tion  (1), taking into account that the second GF in (13) 
must have +N 1L  electrons on the left and NR on the right. 
Analogously, the first GF in (13) must have NL electrons on 
the left and +N 1R  on the right. Thus

∑
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and remembering that = +( ) ( ) ( )E E EN N N
0 0 0

L R , we get

Figure 2.  Scheme of the configurations involved in the calculation 
of the GF for a system with three sites and an electron, originally 
placed at site in the middle. Each rectangle corresponds to a 
configuration. Red arrows mark the insertion of an electron at site 
1, while blue arrows signal the extraction of a particle at site 3, and 
wavy arrows propagation by expansion in the hopping t.

Figure 3.  Scheme of a system that can be divided into two 
subsystems with no interaction between them and a small transfer 
integral t between them.
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The first sum in (15) corresponds precisely to the electron 
contribution to the GF between 1 and i, while the second sum 
corresponds to the electron contribution between i   +   1 and L. 
We finally arrive at

ω ω( ) = ( ) ( + )G i tG i LGF 1 1, ; 1, ; .el el� (16)

A similar procedure for the second term on the RHS of (12) 
produces the hole-hole contribution

ω ω( ) = ( ) ( + )G i tG i LGF 2 1, ; 1, ; .ho ho� (17)

The combined contribution of terms 3 and 4 on the RHS of 
(12) and that of 5 and 6 result, respectively in

ω ω( ) + ( ) = ( ) ( + )G i tG i LGF 3 GF 4 1, ; 1, ;el ho� (18)

ω ω( ) + ( ) = ( ) ( + )G i tG i LGF 5 GF 6 1, ; 1, ; .ho el� (19)

Adding together all six contributions (16)–(19), the final 
result is

ω ω ω( ) = ( ) ( + )G L G i tG i L1, ; 1, ; 1, ; .� (20)

This factorization of the GF is a central result of the paper. 
It is a rather general result only requiring a large tunnel barrier 
between two regions and weak interactions between them. It 
may be applied to different materials of technological impor-
tance such as polymer melts and granular metals. We note that 
this factorization is not verified by other apparently simpler 
quantities like, for example, the correlation function

ψ ψ( ) = ⟨ ∣ ∣ ⟩( ) ( )c L c c1, .N
L

N
0 1

†
0� (21)

The factorization is also specially relevant from a prac-
tical point of view in our calculations on the strong locali-
zation limit even in the presence of interactions. Whenever 
the classical ground state has two nearest neighbors with the 
same occupancy the GF factorizes. When two adjacent sites 
are empty (at zero order in t), as particles only move to the 
right, they are never both occupied in any of the configura-
tions relevant for the GF and so there is no effective interac-
tion between these sites. Then the GF factorizes as a product 
of the GF from 1 to the first of these two adjacent sites times 
the GF from the second site to L. The same argument applies 
to two consecutive occupied sites by a symmetry argument. 
To show this explicitly, we rewrite the corresponding interac-
tion between these two sites as

= ( − )( − ) + ( + ) −+ + +Un n U n n U n n U1 1 ,i i i i i i1 1 1� (22)

where =n c ci i i
† . The first term on the RHS of (22) is the inter-

action between two empty sites (which never takes place in our 
approach). The second term is an effective local potential U on 
each of the two sites involved that can be added to the disorder 
energy, and the third term is just a constant. The GF factorizes 
again, but we have to take into account that the effective dis-
order energy of each site is increased by the amount U.

As the GF can be factorized whenever two adjacent sites 
are either both occupied or both empty, the hard part of the 
problem is just the calculation of the GF of chains with alter-
nating occupancy.

5.  Numerical results

5.1.  Methods

We have implemented a numerical procedure to evaluate the 
GF for the ground state in the strongly localized limit. The 
algorithm is as follows. For each realization of the site dis-
order energies, we first calculate the exact classical ground 
state (in the absence of the transfer energy) at constant 
chemical potential μ. We calculate the ground state occupa-
tion with an iterative procedure in the spirit of the transfer 
matrix technique. Starting form the left end of the sample, we 
advance site by site keeping the configurations with lowest 
free energy for the two possible occupations of the last site. 
Then we consider a new site and update those configurations. 
When there is a region where the two sequences coincide, 
we know that this common sequence is that of the ground 
state. When we reach the right end of the system we select 
the appropriate sequence according to the boundary condi-
tion. We concentrate on half occupation (μ = U) and we add 
a boundary term in the Hamiltonian, = ( + )H c c c c U /2b 1

†
1 L

†
L , 

to preserve this occupation near the borders [15]. Once we 
have the classical ground state we look for all the pairs of 
adjacent sites with the same occupation, where we know that 
the GF factorizes. For each chain of alternating occupations 
we obtain the GF summing the contributions of all possible 
paths where particles jump to the right. We study how the GF 
varies as a function of the ratio U/W. The only limiting factor 
of the procedure is the probability of finding a long chain 
with alternating occupancies in the ground state, since the 
number of configurations involved grows exponentially with 
chain length.

In the strongly localized regime, gln  is the self-averaging 
quantity, and as ∝ ∣ ∣g GR

2 we average ω⟨ ∣ ( )∣⟩G Lln 1, ;  over dis-
order realizations. To an excellent approximation this average 
is proportional to system size and related to the localization 
length ξ by

ξ
ω μ− = ∣ ( = )∣G L

L

1 ln 1, ;
� (23)

For sizes up to L   =   40 we can handle all the values of the 
ratio U/W.

We also employ exact diagonalization of small systems 
in order to compare with our results. The localization length 
is obtained by measuring the sensitivity of the ground-state 
energy under a change in the boundary conditions. Intuitively, 
only particles with certain probability of being near the edges 
of the system will notice these conditions. Then, the sensi-
tivity of physical quantities to the boundary terms should 
decay exponentially in size for localized systems. We expect 
for a one-dimensional system [5, 16]:
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ξ
( Δ ) = − +

→∞
L E

L
clim ln  

L
� (24)

where c is a constant and πΔ = ∣ ( ) − ( )∣E E E 0gs gs . The quantity 
φ( )Egs  is the ground-state energy with boundary conditions 
= φ

+c ceL 1
i

1. We notice that these type of boundary conditions 
occurs for particles placed in a one-dimensional ring which is 
threaded by a magnetic flux φ πΦ = Φ ( )/ 40 , where Φ = ℏe2 /0  
is the magnetic flux quantum.

We proceed as follows to compute the localization length. 
The energy difference between the ground-state for periodic 
and anti-periodic boundary conditions, Δ ( )E L , is obtained for 
several sizes L (from 8 to 22). Then, an average over many 
samples is performed to obtain ⟨ Δ ( )⟩L E L . We fit these data to 
a straight line aL   +   b. Taking into account equation (24), we 
extract the localization length as ξ = a1/ . Only the ground-
state energy is needed in our computations. For this reason, 
we have employed ARPACK [17] libraries which are specially 
suited to compute a few eigenvalues of a sparse matrix.

5.2.  Results

Within our approach, and using equation  (23), it is easy to 
show that

⎜ ⎟
⎛
⎝

⎞
⎠ξ ξ

= + f
U

W

1 1

0
� (25)

where ξ0 is the non-interacting localization length at 
a given disorder, and in the strongly localized limit 
ξ = ( ) −− W tln /2 10

1 . We have performed a systematic study 
of the localization length for a system of size L   =   40 at half 
occupation and as a function of the ratio U/W. We consider an 
energy equal to the chemical potential, ω μ= .

In the inset of figure 4 we represent the localization length 
versus U/W for W   =   10 (blue) and 20 (red). The symbols 
correspond to the exact diagonalization results and the con-
tinuous curves to our approach. Our results can be scaled into 
a single curve by plotting ξ ξ− +− −1

0
1 versus U/W, as it is done 

in the main panel of figure 4. The black curve corresponds to 
our results, while the symbols to exact diagonalization with 
W   =   20 (red), 10 (blue) and 5 (green). For an attractive inter-
action, U  <  0, the localization length decreases, with respect 
to the noninteracting case, while for weak repulsive interac-
tions, the system becomes less localized. This is in contrast 
with previous simulations at moderate disorder [15, 18] and 
in agreement with calculations for strong disorder [19, 20]. 
We have included results from exact diagonalization for 
large disorder in order to visualize the evolution of ξ from 
moderate to large disorder. As disorder increases, the exact 
results approach ours and show similar behavior presenting a 
maximum of the localization length at U/W approaching the 
value 0.3.

The smooth tendency of the exact results towards the 
→t 0 limit indicates that the perturbative approach is rea-

sonable. From a quantitative point of view, results can be 
improved by properly modeling the effects of resonances 
(see section 7).

6.  Factorization approximation

The fact that the GF factorizes when two nearest-neighbors 
sites have the same occupation determines that the conduc-
tance distribution is log-normal. As the ratio U/W increases 
the length of alternating sequences also increases, and we 
want to investigate the influence that a smaller degree of fac-
torization has on the overall GF. In this context, we analyze 
how well a factorization approximation can fit the results.

As a first step towards a factorized expression to approxi-
mate the GF, we consider by analogy with the noninteracting 
case in the strongly localized limit

∏ω ω( ) ≈ ( )−

=

G L t G i i1, ; , ; .L

i

L
1

1

� (26)

This expression is equivalent to the single-particle GF, but 
ω( )G i i, ;  is calculated taking into account the interaction con-

tribution at site i from the rest of the system, assuming that 
particles are frozen in the ground state. In figure 5 we compare 

ξ ξ− +− −1
0

1 as a function of U/W for our perturbation proce-
dure (black curve) and for the present approximation (green 
curve). The discrepancy between both results is quite large.

It is easy to improve the estimate (26) drastically by 
analogy with the following exact result for the one-particle 
GF in 1D [21]

″ ″
″ ″

( ) = ( ) ( )
( )

′ ′
G x x

G x x G x x

G x x
,

, ,

,
.� (27)

Based on this result, we propose as a second-order 
approximation

∏ω ω ω
ω

( ) ≈ ( ) ( + )
( )=

−

G L G
G i i

G i i
1, ; 1, 2;

, 1;

, ;
.

i

L

2

1

� (28)

The blue curve in figure 5 corresponds to this approxima-
tion and represents a big improvement with respect to (26). 
We note that in the places where the GF factorizes, as deduced 

Figure 4.  Change in the inverse localization length with respect 
to the noninteracting case as a function of U/W for our procedure 
(black curve) and for three values of the disorder W   =   5 (green), 
10 (blue) and 20 (red) with exact diagonalization. The inset shows 
the localization length itself for the exact result (circles) and our 
approach (continuous curves) for W   =   10 (blue) and 20 (red).
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in section 4, equation (28) is exact (within our forward-scat-
tering path approximation).

The previous scheme can be generalized to nth order

∏ω ω ω
ω

( ) ≈ ( ) ( + − )
( + − )=

−

G L G n
G i i n

G i i n
1, ; 1, ;

, 1;

, 2;
.

i

L n

2

� (29)

The results for n   =   2 are also shown in figure 5 (red curve). 
They already constitute and excellent approximation to our 
GF.

These results show that a factorized expression may rep-
resent properly the GF in all cases and approaches the exact 
result even for U  >  W/2, when the ground state corresponds to 
an alternated sequence. We note that one can expect factoriza-
tion to become exponentially accurate for U  <  W/2 and in all 
cases if occupation is different from 1/2.

7.  Discussion

We have investigated the single-particle retarded GF in the 
strongly localized limit for interacting fermionic systems and 
we have obtained a diagrammatic representation in terms 
of forward-scattering paths. It is also possible to proceed in 
the same way for bosonic systems. We have also shown that 
the GF factorizes when the system can be separated into two 
non interacting parts. This theorem is of major importance 
because, as we have shown, in 1D with nearest neighbors inter-
actions this factorization applies when two adjacent sites are 
both occupied or both empty. Similarly we can always expect 
factorization of the GF for more general short-range interac-
tions. This fact leads to relevant consequences. According to 
single-parameter scaling we can expect the conductance dis-
tribution to be universal and we can claim that in the strongly 
localized limit, due to this factorization, interacting systems 
present a log-normal distribution. We can also conclude that 
both mean and variance of glog  grow linearly with L. We 
note that a dependence Var( ) ∝ ( )g Llog 2/3  was claimed for the 
same model in the localized regime [18]. According to our 
results this exponent should be 1 in the strongly-localized 

limit, when → ∞L , and we believe that the exponent 2/3 was 
obtained without reaching the proper asymptotic behavior. In 
summary, we have shown that the conductance distribution 
for interacting systems is similar to the distribution for non 
interacting systems, and thus share the same universality class 
in the single parameter scaling limit.

A similar argument can be applied to 2D systems as well. 
In this case the 2D GF between points r1 and r2 is the sum of 
all 1D GF calculated along all possible directed paths con-
necting the two points. Factorization into local contributions 
in real space is guaranteed at least for occupation far from 1/2.

A possibility that could invalidate the previous conclusions 
would be a non perturbative character of the problem. If the 
system has a well defined localization length, in the renor-
malization group sense, we must expect a flow into the fixed 
point ξ →L/ 0 and our arguments should be valid. But it might 
happen that adding any amount of interaction, the localization 
length could become not well defined. According to the many-
body localization theory [2] this is not the case near T   =   0, 
but it could occur at higher temperatures.

The main motivation to use the forward-scattering 
approximation was to state in the simplest way the univer-
sality of the problem. But we have shown that this approxi-
mation could give good quantitative estimations of ξ for 
large disorder. We believe that quantitative agreement would 
greatly improve after a proper treatment of the resonances of 
the problem.

In the limit of strong disorder and when the initial state is 
the ground state, there are no many resonances, i.e. factors 
larger than 1 in our path expansion. In order to extend the 
method to highly excited states, for which there are an expo-
nentially large number of other states with roughly the same 
energy, one will have to handle resonances properly.

We would like to remark that the factorization of the GF, 
proved in section 4, is of very general applicability and, in par-
ticular, can be very useful in heterogeneous systems, as gran-
ular metals or polymer systems, where the entities composing 
the material are linked by small hopping and interaction ener-
gies, much smaller than the other typical energies involved in 
the transport process.

As we have already mentioned, our procedure also applies 
to bosons. One just have to take into account the proper com-
mutation relations and the possibility that any site is occu-
pied by any integer number of bosons. The GF for interacting 
bosons is most interesting for excited states and is the aim of 
future work. For instance, experiments involving Josephson 
junctions arrays work often in a regime in which the Josephson 
energies, which control Cooper pair tunnel through the junc-
tions, are much smaller than charging energies, which con-
trol potential contribution to the energy due to an excess of 
Cooper pairs. Furthermore, the capacitative coupling between 
different superconducting islands are, in many occasions, very 
small or negligible [22]. In this case, our result can be useful 
to factorize the total GF of Cooper pairs using contributions 
coming from different superconducting islands.

The method proposed here could also be the starting point 
of an alternative route to investigate some aspects of many-
body localization.

Figure 5.  Change in the inverse localization length with respect to 
the noninteracting case as a function of U/W for our perturbative 
procedure (black curve) and for equations (26) (green curve), (28) 
(blue curve) and (29) with n   =   2 (red curve).
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