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I. INTRODUCTION

Two major areas of research that have evolved somewhat
independently over the past three decades are phase coherent
charge transport in mesoscopic structures �ultrasmall struc-
tures smaller than the inelastic mean free path of an
electron�1–4 and quantum computing based on coherent rota-
tions of an electron spin.5–15 These two areas are seemingly
disparate because one deals with the charge degree of free-
dom of an electron and the other with the spin degree of
freedom, but there are some similarities which suggest that
there may be a fundamental connection between them. For
example, phase coherence of the electron’s wave function is
needed in both applications. For charge transport the orbital
part of the electron’s wave function needs to retain phase
coherence, and for spin-based quantum computing the spin
part of the wave function needs to remain phase coherent.
Because of these similarities, a unified description should
exist that applies to both fields.

Some recent efforts have been made to stress the analogies
between coherent charge transport and coherent spin
operations,16,17 but that description is couched in a language
that is too sophisticated to teach at the undergraduate level in
most physics or engineering curricula. In this article we have
steered clear of sophisticated jargon and difficult concepts
and instead used materials from undergraduate level physics
to explain the effective spin concept, which is the theoretical
tool that connects charge transport and spin qubit operation.
Hopefully, this article will inspire inquisitive students to
delve further into the fields of coherent charge transport and
spin qubit operations.

We first show how the wave function of an electron inci-
dent on a mesoscopic structure can be written as a 2�1
component spinor instead of the usual scalar and how the
wave function of the transmitted electron can also be written
as a 2�1 component spinor. Next we show that the 2�2
scattering matrix that relates the transmitted wave function
spinor to the incident wave function spinor can be interpreted
as the unitary matrix describing the coherent rotation of a

spin whose initial state corresponds to the incident wave and
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whose final state corresponds to the transmitted wave. Pas-
sage of the electron through the mesoscopic structure can
therefore be viewed as coherent spin rotation. This viewpoint
allows us to unify the fields of coherent charge transport and
spin-based operations.

Ionicioiu16 formulated a similar approach to describe the
phenomenon of entanglement �a concept much discussed in
the context of spin-based quantum computing� between
propagating modes in a mesoscopic structure. This entangle-
ment has been observed by Neder et al.17

The outline of this paper is as follows. In Sec. II we in-
troduce the effective spin concept to describe coherent trans-
port due to a single channel in mesoscopic systems in which
an arbitrary tunneling problem is characterized by the elec-
tron transmission and reflection amplitude as a function of
the incident energy. In Sec. III we describe the quantum
computing analog to the tunneling problem and introduce the
very important concept of the Bloch sphere. Section IV con-
tains several numerical examples to illustrate this analogy by
revisiting single channel charge tunneling through a single
delta scatterer, a resonant tunneling structure, a periodic ar-
ray of delta scatterers, and one-dimensional �1D� arrays of
randomly distributed elastic scatterers using the language of
quantum computing.

II. THE EFFECTIVE SPIN CONCEPT

In tunneling problems the mesoscopic structure through
which an electron tunnels is characterized by an arbitrary
potential barrier. The transmission and reflection amplitudes
are usually calculated by the scattering matrix approach.18,19

The scattering matrix relates the incoming �a+ ,b−� to outgo-
ing �b+ ,a−� wave amplitudes on both sides of a scattering
region �mesoscopic structure�, as shown in Fig. 1, such that

���OUT�� = �b+

a−� = S�a+

b−� = � t r�

r t�
��a+

b−� = S���IN�� ,

�1�
where S is the scattering matrix.

164© 2011 American Association of Physics Teachers



For single-mode transport, assuming an electron incident
from the left,

��l�IN�� = �1

0
� �2�

and

��l�OUT�� = � t

r
� , �3�

whereas for an electron incident from the right, we have

��r�IN�� = �0

1
� �4�

and

��r�OUT�� = �r�

t�
� . �5�

The tunneling problem is completely characterized by the
amplitudes �t ,r� or �r� , t�� depending on the direction of in-
cidence of the incoming electron.

Without loss of generality, we can always think of the
two-component column vector ���OUT�� as a spinor because
it is normalized for coherent transport. The normalization
follows from the unitarity of the scattering matrix, that is,
S†S= I �† represents the Hermitian conjugate�. Furthermore,
the spinor ���OUT�� can be thought of as the output of a
one-qubit quantum gate whose input is the spinor ���IN��
= �1,0�† or �0,1�† depending on the direction of propagation
of the incident electron. The 2�2 unitary matrix linking the
spinors ���IN�� and ���OUT�� can therefore be viewed as the
matrix characterizing the rotation of a qubit whose initial
state was ���IN�� and whose final state is ���OUT��. This
matrix is also the scattering matrix describing the tunneling
problem. Herein lies the analogy between a quantum logic
operation on a spin qubit and coherent charge transport in a

Q.C.

Gate ⎥
⎦

⎤
⎢
⎣

⎡

r

t

⎥
⎦

⎤
⎢
⎣

⎡
=〉

0

1
0|

Q.C.

Gate ⎥
⎦

⎤
⎢
⎣

⎡

'

'

t

r

⎥
⎦

⎤
⎢
⎣

⎡
=〉

1

0
1|

Device

1 t

r 0

Device

0 r’

t’ 1

Tunneling Problem Quantum Computing Analog

L

L R

R

S

a
+

a
-

b
+

b
-

Fig. 1. The tunneling problem and its quantum computing gate equivalent.
The scattering matrix associated with a device relates the incoming �a+ ,b−�
to the outgoing �a− ,b+� wave amplitudes. It can be interpreted as the matrix
representing the rotation of a qubit from the initial state ���IN�� to the final
state ���OUT��.
mesoscopic structure.
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III. QUANTUM COMPUTING ANALOG

Consider the tunneling problem of an electron incident
from the left on an arbitrary one-dimensional conduction
band energy profile Ec�x�. We refer to the �2�1� column
vector ��l�OUT�� in Eq. �3� as the effective spin whose com-
ponents characterize completely the scattering amplitudes of
the tunneling electron. For an arbitrary potential energy pro-
file Ec�x�, the amplitude ��l�OUT�� can be found by succes-
sively cascading scattering matrices associated with subsec-
tions within each of which Ec�x� is approximated by constant
values Ec1 ,Ec2 ,Ec3 , . . . ,Ecn.18,19 The evolution of the pure
state ��l�OUT�� after crossing a number of subsections can
be represented using the Bloch sphere concept in which the
spinor is parametrized as7,20

��l�OUT�� = ei��cos
�

2
�0� + sin

�

2
ei��1�� , �6�

where � is an arbitrary phase factor and the angles �� ,�� are
the azimuthal and polar angles, as shown in Fig. 2.

In Eq. �6�, �0� and �1� are the �2�1� column vectors
�1,0�† and �0,1�†, respectively, associated with the north and
south poles of the Bloch sphere. They are mutually orthogo-
nal, that is, their inner product 	0 �1�=0.7

To complete the effective spin picture, we consider the
2�2 matrix,21

� = ��l�OUT��	�l�OUT�� = 
 t

r
��t�r�� = 
�t�2 tr�

rt� �r�2
� . �7�

Using this density matrix and the Pauli spin matrices
��x ,�y ,�z�, the effective spin components associated with
the spinor ��l�OUT�� are given by

	Sx� =
�

2
Tr���x� =

�

2
�tr� + rt�� = � Re�rt�� = � Re�r�t� ,

|0>

|1>
x

z

θ

n
)

)(OUT
lψ
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rψ

θπ −

Φ

Φ−π

y

Fig. 2. Bloch sphere representation of the effective spin �qubit� ���OUT��.
The radius of the sphere is equal to 1. ��l�OUT�� ���r�OUT��� is the spinor
given in Eq. �3� �Eq. �5�� when the electron is incident from the left �right�
contact.
�8�
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	Sy� =
�

2
Tr���y� =

�

2
i�tr� − rt�� = � Im�rt�� = − � Im�r�t� ,

�9�

and

	Sz� =
�

2
Tr���z� =

�

2
��t�2 − �r�2�

=
�

2
�1 − 2�r�2� =

�

2
�2�t�2 − 1� . �10�

For an electron incident from the right, ��r�IN��= �1�, and
the density matrix ���=��r�OUT��	�r�OUT��� is such that
��=1−�, where � is given by Eq. �7� and the components
	Sx�, 	Sy�, and 	Sz� are the negative of the values in Eqs.
�8�–�10�. Therefore, the two spinors corresponding to
��l�OUT�� and ��r�OUT�� are mirror images of each other,
corresponding to a reflection through the origin of the Bloch
sphere. As a result, ��l�OUT�� and ��r�OUT�� are orthogonal,
which they must be because the scattering matrix is unitary.

The unitarity of the scattering matrix also leads to

	Sx�2 + 	Sy�2 = �2�t�2�1 − �t�2� �11�

and

	Sx�2 + 	Sy�2 + 	Sz�2 = �2/4. �12�

Equation �11� shows that the projection of the spinor in the
equatorial plane of the Bloch sphere reaches a maximum
when �t�= �r�=1 /�2. Actually, 	Sx�2+ 	Sy�2 is proportional to
�t�2�1− �t�2�, that is, the low frequency shot noise power for
the tunneling electron.22 Because 	Sx�, 	Sy�, and 	Sz� are pro-
portional to the components of the spinor ���OUT�� on the
Bloch sphere, Eq. �12� states that the spinor stays on the
Bloch sphere during the cascading of the scattering matrices.
The latter are unitary for the case of coherent transport. The
angles �� ,� ,�� appearing in the generic expression of the
spinor �or qubit� in Eq. �6� can be expressed in terms of the
phases and magnitudes of the reflection and transmission co-
efficients,

��l�OUT�� = � t

r
� = � �t�ei	T

�r�ei	R
� = ei	T� �t�

�r�ei�	R−	T� � , �13�

where 	R and 	T are the phases of the reflection and trans-
mission amplitudes, respectively. We obtain �=	T and
�=	R−	T. Furthermore,

�t� = cos
�

2
, �14�

�r� = sin
�

2
= �1 − �t�2, �15�

and therefore

�

2
= tan−1
 �r�

�t� � . �16�

Equations �8�–�10� are therefore equivalent to

	Sx� =
�

sin � cos � , �17�

2
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	Sy� =
�

2
sin � sin � , �18�

and

	Sz� =
�

2
cos � . �19�

Equations �8� and �9� show that the averages 	Sx� and 	Sy�
contain more information than the sample conductance
alone. The latter depends only on the magnitude of the trans-
mission �t� or reflection �r� in the Landauer picture,23 whereas
	Sx� and 	Sy� depend on the phase relation between t and r as
well. The phase relation is a strong function of the energy of
the incident electron. At nonzero temperature, there will be a
thermal spread in the energy of the incident electron which
will lead to a decrease with temperature of the average spin
components 	Sx� and 	Sy�, that is, the off-diagonal compo-
nents of the density matrix �. Note that although 	Sx� and
	Sy� depend on the off-diagonal components of the density
matrix and are very energy sensitive, 	Sz� depends only on
the diagonal components of the density matrix and is much
less energy sensitive.

The 2�2 unitary matrix or quantum computing gate UQG,
which relates ���OUT�� and ���IN�� on the Bloch sphere, has
the general form,7

UQG�
,�,�,
� = ei
Rz���Ry���Rz�
� , �20�

where �
 ,� ,� ,
� are real numbers and the Ry and Rz are the
2�2 matrices associated with rotations of the spinor on the
Bloch sphere about the ŷ and ẑ axes, respectively. If we use
the fact that Ry���=e−i��y/2 and Rz�
�=e−i
�z/2,7 we obtain

UQG�
,�,�,
� = 
ei�
−�/2−
/2� cos
�

2
− ei�
−�/2+
/2� sin

�

2

ei�
+�/2−
/2� sin
�

2
ei�
+�/2+
/2� cos

�

2
� .

�21�

For ��l�IN��= �0� we have

��l�OUT�� = UQG�
,�,�,
��0� = 
ei�
−�/2−
/2� cos
�

2

ei�
+�/2−
/2� sin
�

2
� ,

�22�

which is the special case of a spinor on the Bloch sphere in
Eq. �6�, corresponding to


 = � = 	T, �23a�

� = � = 2 tan−1� �r�
�t� � , �23b�

� = − 
 = � = 	R − 	T. �23c�

Hence, from a quantum computing perspective, the analyti-
cal expression for UQG is identical to the scattering matrix

used to described the tunneling problem and is given by
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UQG�	T,�, �t�� = ei	TRz�	R − 	T�Ry

�
2 tan−1� �r�
�t� ��Rz�	T − 	R� . �24�

Equation �24� helps visualizing coherent charge transport �or
tunneling� through specific mesoscopic devices as a succes-
sive set of rotations of the effective spin on the Bloch sphere.

IV. EXAMPLES

A. Scattering across a single delta scatterer

We first determine the quantum computing gate analog of
a simple delta scatterer of strength VI��x� for which the re-
flection and transmission amplitudes are easily shown to be

t� = t =
ik

ik − k0
=

ik̃

ik̃ − 1
�25�

and

r� = r =
k0

ik − k0
=

1

ik̃ − 1
, �26�

with k̃=k /k0, k0=m�VI /�2, and k=�2m�E /�2; E is the ki-
netic energy of the electron and m� is its effective mass.

The magnitude and phase of t and r are therefore

�t� =
k̃

�k̃2 + 1
, 	T = − tan−1
1

k̃
� �27�

and

�r� =
1

�k̃2 + 1
, 	R = tan−1�k̃� − � . �28�

The spinor ��l�OUT�� for this problem is given by Eq. �6�,
where

� = 	R − 	T = −
�

2
�29�

and

� = 2 tan−1�1/k̃� . �30�

The equivalent quantum computing gate is characterized by
the unitary matrix UQG given by

UQG = ei�TRz
− �

2
�Ry���Rz
�

2
� = ei�TRx�− �� , �31�

where Rx is the matrix for spinor rotation about the x axis.7

For low incident energy, �=� and � monotonically go to 0 as
the energy of the incident electron increases. According to
Eqs. �17�–�19� the spinor ��l�OUT�� sweeps out only a very
limited portion of the Bloch sphere, that is, the semicircle in
the y-z plane, going from the south to north poles clockwise
as the energy of the incident electron increases. The spin
components of ��l�OUT�� along the x, y, and z axes are given
by
	Sx� = 0, �32�
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	Sy� = −
�

2
 2k̃

k̃2 + 1
� , �33�

and

	Sz� =
�

2
 k̃2 − 1

k̃2 + 1
� . �34�

For instance, when k̃=1, ��l�OUT�� is in the equatorial
plane of the Bloch sphere along the y axis. In this case
�=� /2, and the matrix UQG is given by

UQG = e−i��/4�Rz
−
�

2
�Ry
�

2
�Rz
�

2
�

= e−i�/4S
−
�

2
��xHS
�

2
� , �35�

where

S��� = �1 0

0 ei�� �36�

and

H =
1
�2
�1 1

1 − 1
� �37�

are, respectively, the general phase shift and the Hadamard
matrix, which are extensively used in the theory of quantum
computing.7

B. Scattering through a delta scatterer in a region
of length a

Next, we consider the scattering problem across a region
of length a containing a delta function scatterer at location
x0. The corresponding scattering matrix can be derived. The
location of the spinor ��l�OUT�� on the Bloch sphere is de-
scribed by the azimuthal angle � given in Eq. �30� and the
polar angle

� = −
�

2
− k�a − 2x0� . �38�

The average values of the effective spin components are
given by

	Sx� =
�

2
 2k̃

k̃2 + 1
�sin k�2x0 − a� , �39a�

	Sy� = −
�

2
 2k̃

k̃2 + 1
�cos k�2x0 − a� , �39b�

	Sz� =
�

2
 k̃2 − 1

k̃2 + 1
� . �39c�

In this case 	Sx� is nonzero unless x0=a /2, that is, unless the
potential energy profile in the device is spatially symmetric.
For a fixed value of the incident wave vector, the spinor
��l�OUT�� moves on a circle parallel to the �x ,y� plane. If a
is selected such that ka=�, � increases linearly from −3� /2

to � /2 as x0 varies from 0 to a; that is, the Bloch vector
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associated with the spinor sweeps the entire plane defined by
the component 	Sz�. According to Eqs. �39a� and �39b�, if
ka=�, the average values of 	Sx� and 	Sy� are equal to zero
when we average over the impurity location x0. This is a
requirement in the theory of localization in 1D arrays of
scatterers, as will be discussed later.

The quantum computing gate UQG analog of this tunneling
problem is given by

UQG = ei	TRz
−
�

2
+ k�2x0 − a��Ry���Rz

�
k�a − 2x0� +
�

2
� . �40�

Because � is still given by Eq. �30�, a spin flip from the south
to the north pole is possible only if we increase the energy of
the incident electron to infinity. The energy cost for the spin
flip is drastically reduced if we have two or more delta scat-
terers, as we will discuss next.

C. Scattering across a resonant tunneling structure

We consider the scattering problem across a resonant tun-
neling structure consisting of two delta function scatterers of
equal strength VI separated by a distance a. In our numerical
calculations we use VI=0.3 eV Å and a=50 Å. Figure 3 is a
plot of the transmission coefficient T as a function of the

reduced wave vector k̃. The first two resonances �at which

T=1� occur at k̃�12.5 and 36. The corresponding variation
of the phase angles �� ,�� for the spinor ��l�OUT�� is dis-
played in Fig. 4. The angle � reaches its minimum value of
zero at the resonances when there is a sudden jump in �.
When viewed as a quantum computing gate, a resonant tun-
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Fig. 3. Transmission �T= �t�2� and reflection �R= �t�2� coefficients for an elec-
tron incident on a resonant tunneling structure as a function of the reduced

wave vector k̃=k /k0, where k=�2m�E /�2, E is the kinetic energy of the
incident electron in the contact, and k0=m�VI /�2, VI is the strength of the
delta scatterer. The two delta function scatterers are separated by 50 Å and

have a strength VI=0.3 eV Å. �k̃ is the minimum wave vector �in reduced
units� needed to realize a spin flip from the south to north poles on the Bloch
sphere.
neling device is more efficient when operated over the range
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�k̃ indicated in Fig. 4 because it allows a full swing in �
from 0 to �, whereas the swing in � is much smaller between

the first two and higher resonances. The quantity �k̃ is much

smaller than the infinite change in k̃ needed for a single delta
scatterer to realize an inverter, as discussed in Sec. IV B.

Because T=R for k̃= k̃�, �=� /2, which is enough to imple-
ment the Hadamard gate using a resonant tunneling device.

These results can be extended to a superlattice, modeled as
a sequence of evenly spaced identical delta function scatter-
ers. In this case each resonant state present in the smaller unit
with two scatterers leads to a passband for the infinitely pe-
riodic structure. In Fig. 5 we plot the transmission coefficient
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Fig. 4. Plot of the phase angles �� ,�� for the spinor ��l�OUT�� �Eq. �3��
associated to an electron incident on a resonant tunneling structure as a

function of the reduced wave vector k̃=k /k0. The parameters of the resonant

tunneling structure are the same as in Fig. 3. �k̃ is the minimum wave vector
�in reduced units� needed to realize a spin flip from the south to north poles
on the Bloch sphere. The zeros of � are the locations of the quasibound state
energies of the resonant tunneling structure.
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electron incident from the left on a superlattice modeled as five delta func-
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for a structure consisting of five delta function scatterers with
the same parameters as for the resonant tunneling device we
have described and with the same spacing of 50 Å between
each scatterer. The transmission coefficient reaches unity at

four values of k̃ in the interval,5–25 which is a well known

result for finite repeated structures.24,25 Also the range �k̃
needed to reach the condition T=R is reduced compared to
the case of a resonant tunneling device. As the number of

periods in the superlattice increases, �k̃ converges to a limit
corresponding to the lower edge of the passband of the infi-
nite superlattice. As shown in Fig. 6�a�, the angle � allows a
full swing from the north the to south pole on the Bloch

sphere over a range �k̃, which is smaller than what is nec-
essary for a resonant tunneling device, and the phase angle �
toggles back and forth between −� /2 and � /2 each time a
resonance is crossed.

Figure 5 also shows a plot of the transmission coefficient

�curves labeled 1 and 2� versus k̃ for two imperfect structures
in which the locations of the five delta scatterers are chosen
randomly over each interval of length a. The transmission

coefficient is fairly sensitive to k̃ in the range of k̃ where the
lower passband occurs for the infinite superlattice. However,
the transmission curve is insensitive to the imperfections in

the superlattice in the same range of k̃. As shown in Figs.
6�b� and 6�c�, the angle � is also insensitive to imperfections
in the superlattice but the phase � is not. The latter result is
the compounded effect of multiple reflections between impu-
rities and the sensitivity of � to the exact impurity location in
each section of length a.

D. Scattering through a periodic array of delta scatterers

The scattering matrix elements for the 1D periodic system
�or superlattice� can be calculated exactly.26–28 The transmis-
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sion amplitude is found to be
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tN =
ei�N−1�ka

DN
, �41�

and the reflection amplitude is given by

rN = − i
k0

k

ei�N−1�ka

DN

sin�N�a�
sin��a�

, �42�

where

DN = eiNka�cos�N�a� + i Im�e−ika
1 + i
k0

k
�� sin�N�a�

sin��a� � ,

�43�

a is the distance between adjacent scatterers, and � is the
quasimomentum. � is the solution of the transcendental
equation,

cos��a� = cos�ka� +
k0

k
sin�ka� . �44�

By using Eqs. �8�–�10�, it can be shown that 	Sx�=0,

	Sy� = − � Re�r�t�

= −
�

1 + �k0/k�2�sin2�N�a�/sin2��a��
sin�N�a�
sin��a�

k0

k
,

�45�

and

	Sz� =
�

2
�2�t�2 − 1�

=
�

2
� 2

1 + �k0/k�2�sin2�N�a�/sin2��a��
− 1� . �46�

For N=1 we recover Eqs. �33� and �34�. For N delta scat-
terers the incident energies which satisfy the condition,

sin�N�a�
sin��a�

= 0, �47�

correspond to the transmission equal to unity, which occurs
at values of the quasimomentum in the first Brillouin zone,

�na =
�n

N
, �48�

with �n=1, . . . ,N−1�. At these values 	S�= 	Sy�=0 and
	Sz�=� /2.

E. Transport through random arrays of delta scatterers

The analysis of Sec. IV E was extended to a large number
of delta function scatterers of strength VI��x− �x0

i + �i−1�a��,
where VI is chosen to be 0.3 eV Å and x0

i is the location of
the ith impurity located in the interval ��i−1�a , ia�. Each
impurity location is generated using a uniform random num-
ber in each interval. The length of each subsection is set
equal to 237 Å and the wave vector of the incident electron
k is chosen such that ka=� for an incident energy E of
10 meV and m�=0.067m0, the electron effective mass in
GaAs.

Figure 7 is a plot of the phase angle � of the spinor
��l�OUT�� versus the number N of subsections crossed. The

two top curves are � versus N for two impurity configura-
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¯

tions. The curves show regions where � decreases as N in-
creases, which corresponds to an increase in the conductance
of the array. This decrease in � as N increases is pronounced
for one of the two impurity configurations for N�20. A plot
of the average value of � over an ensemble of 105 samples is

shown as the curve labeled �̄ in Fig. 7. The quantity

�=� /2 for N�23. For samples with this number of impuri-
ties, their average resistance is equal to h /e2 and the elastic
mean free path is equal to 23�237 Å�0.55 �m.

The resistance of the random arrays versus the number of
impurities crossed is plotted in Fig. 8. The latter was gener-
ated by first calculating the conductance of the sample using
the Landauer formula,23
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Fig. 7. Evolution of the angle � for the spinor ���OUT�� on the Bloch sphere
as a function of sample length for two arrays of elastic scatterers �two top
curves�. The smoother curve represents the average of � over an average of
105 arrays with the locations of each individual scatterer varied uniformly
across each subsection of the array. The elastic mean free path �el �in units

of subsections crossed� is where �̄=� /2. Here, �el=23.
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GL =
2e2

h
T , �49�

where T is the transmission coefficient across the array cal-
culated at the electron incident energy.

In Fig. 8 we show the results for the resistance
R= 	GL�−1, where 	GL� is the average over a large number of
samples. 	GL� was calculated using the rule for cascading
scattering matrices associated with adjacent sections in a
sample. The rule for cascading either the amplitude or the
probability scattering matrices is outlined in Refs. 18 and 19.
The latter neglects the effects of multiple reflections between
the impurities and leads to Ohm’s law, that is, the classical
result RCL which is expected to grow linearly with the num-
ber of impurities crossed. The quantum-mechanical result,
RQM, includes the effects of quantum interference and mul-
tiple reflections between impurities and leads to an exponen-
tial growth of RQM versus length. The difference between the
two curves in Fig. 8 occurs for a value of the resistance equal
to h /e2 �roughly 23 k��, which occurs for N�23, or the
sample length equal to the elastic mean free path. This ex-
ponential increase in the resistance was first predicted by
Anderson in his pioneering work on the phenomenon of lo-
calization in disordered samples.29 He showed that in strictly
one-dimensional systems any plane wave incident from the
contact decays exponentially in the sample no matter its in-
cident energy and no matter how small the amount of disor-
der. This exponential decay of the wave function in the
sample is the main reason for the exponential increase of
RQM with length.

V. CONCLUSIONS

The effective spin concept has also been used to describe
the spatial correlations between reflection and transmission
amplitudes of polarized photon beams from a combination of
beam splitters, mirrors, and interferometers.30–32 More re-
cently, the effective spin concept has been used to examine
the critical problem of entanglement between channels asso-
ciated with propagating modes in mesoscopic systems, as
reported in recent experiments by Neder et al.17 and their
theoretical interpretation by Samuelson et al.33

We have discussed an alternative description of phase co-
herent charge transport through mesoscopic systems in terms
familiar to researchers in spintronics and quantum comput-
ing. The effective spin formalism provides a quantum com-
puting approach to simple scattering problems and to local-
ization in random arrays of elastic scatterers.

1Y. Imry, Introduction to Mesoscopic Physics �Oxford U. P., New York,
2002�.

2S. Datta, Electronic Transport in Mesoscopic Systems �Oxford U. P., New
York, 1995�.

3M. Cahay and S. Bandyopadhyay, in Advances in Electronics and Elec-
tron Physics, edited by P. W. Hawkes �Academic Press, San Diego,
1994�, Vol. 89, pp. 94–253.

4C. W. J. Beenakker and H. van Houten, in Solid State Physics, edited by
H. Ehrenreich and D. Turnbull �Academic Press, Boston, 1991�, Vol. 44,
pp. 1–228.

5N. S. Yanofsky and M. A. Mannucci, Quantum Computing for Computer
Scientists �Cambridge U. P., New York, 2008�.

6P. Kaye, R. Laflamme, and M. Mosca, An Introduction to Quantum Com-
puting �Oxford U. P., New York, 2007�.

7M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information �Cambridge U. P., New York, 2000�.

170Wan et al.



8S. Bandyopadhyay and V. P. Roychowdhury, “Switching in a reversible
spin logic gate,” Superlattices Microstruct. 22, 411–416 �1997�.

9L. A. Openov and A. M. Bychkov, “Non-dissipative logic device not
based on two coupled quantum dots,” Phys. Low-Dimens. Struct. 9–10,
153–160 �1998�.

10D. Loss and D. P. DiVincenzo, “Quantum computation with quantum
dots,” Phys. Rev. A 57, 120–126 �1998�.

11 V. Privman, I. D. Wagner, and G. Kventsel, “Quantum computation in
quantum-Hall systems,” Phys. Lett. A 239, 141–146 �1998�.

12B. E. Kane, “A silicon-based nuclear spin quantum computer,” Nature
�London� 393, 133–137 �1998�.

13S. Bandyopadhyay, “Self-assembled nanoelectronic quantum computer
based on the Rashba effect in quantum dots,” Phys. Rev. B 61, 13813–
13820 �2000�.

14T. Calarco, A. Datta, P. Fedichev, and P. Zoller, “Spin-based all-optical
quantum computation with quantum dots: Understanding and suppressing
decoherence,” Phys. Rev. A 68, 012310 �2003�.

15A. E. Popescu and R. Ionicioiu, “All-electrical quantum computation
with mobile spin qubits,” Phys. Rev. B 69, 245422 �2004�.

16R. Ionicioiu, “Spintronics devices as quantum networks,” Laser Phys. 16,
1444–1450 �2006�.

17I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and V. Umansky,
“Interference between two indistinguishable electrons from independent
sources,” Nature �London� 448, 333–337 �2007�, and references therein.

18S. Datta, M. Cahay, and M. McLennan, “Scatter-matrix approach to
quantum transport,” Phys. Rev. B 36, 5655–5658 �1987�.

19M. Cahay, M. McLennan, and S. Datta, “Conductance of an array of
elastic scatterers: A scattering-matrix approach,” Phys. Rev. B 37,
10125–10136 �1988�.

20S. Bandyopadhyay and M. Cahay, Introduction to Spintronics �CRC
Press, Boca Raton, FL, 2008�.

21Using the unitary property of the scattering matrix, it can be easily
171 Am. J. Phys., Vol. 79, No. 2, February 2011
checked that the trace of the matrix � is unity and � satisfies the following
properties, �†=�, �2=�, and Tr��2�=Tr���=1, which are all characteris-
tics of the density matrix associated with a pure state �Ref. 7�.

22Y. M. Blanter and M. Büttiker, “Shot noise in mesoscopic conductors,”
Phys. Rep. 336, 1–166 �2000�.

23R. Landauer, “Spatial variation of currents and fields due to localized
scatterers in metallic conduction,” IBM J. Res. Dev. 1, 223–231 �1957�.

24D. J. Vezzetti and M. Cahay, “Transmission resonances in finite, repeated
structures,” J. Phys. D 19, L53–L55 �1986�.

25M. Cahay and S. Bandyopadhyay, “Properties of the Landauer resistance
of finite repeated structures,” Phys. Rev. B 42, 5100–5108 �1990�.

26V. M. Gasparian, B. L. Altshuler, A. G. Aronov, and Z. H. Kasamanian,
“Resistance of one-dimensional chains in Kronig-Penny-like models,”
Phys. Lett. A 132, 201–205 �1988�.

27V. Gasparian, “Transmission coefficient of an electron traveling across a
one-dimensional random potential,” Sov. Phys. Solid State 31 �2�, 266–
268 �1989�.

28V. Gasparian, U. Gummich, E. Jódar, J. Ruiz, and M. Ortuño, “Tunneling
and dwell time for one-dimensional generalized Kronig-Penney model,”
Physica B 233, 72–77 �1997�.

29P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys.
Rev. 109, 1492–1505 �1958�.

30C. H. Holbrow, E. J. Galvez, and M. E. Parks, “Photon quantum mechan-
ics and beam splitters,” Am. J. Phys. 70, 260–265 �2002�.

31T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum
logic operations using polarizing beam splitters,” Phys. Rev. A 64,
062311 �2001�.

32P. T. Cochrane and G. J. Milburn, “Teleportation with the entangled states
of a beam splitter,” Phys. Rev. A 64, 062312 �2001�.

33P. Samuelsson, I. Neder, and M. Büttiker, “Reduced and projected two-
particle entanglement at finite temperatures,” Phys. Rev. Lett. 102,
106804 �2009�.
Lymans Water Wave Demonstrator. In 1868, Prof. Chester Smith Lyman, Professor of Industrial Mechanics and
Physics in the Yale Scientific School, published a description of this wave machine. The patent was assigned to the
Boston maker of physical instruments, E. S. Ritchie. Lymans wave machine demonstrated the motion of water
molecules during the passage of deep-water waves. Viewed from above, the motion of a chip of wood floating on the
surface of the water appears to be back-and-forth; to an observer at the side it moves up-and-down. These two motions
compound to give a circular motion to the chip. The apparatus is at Yale University, and is listed in the 1869 Ritchie
catalogue at $35.00. �Notes and photograph by Thomas B. Greenslade, Jr., Kenyon College.�
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