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a b s t r a c t

Recently, we used an effective spin concept to expound the analogy between spin-based quantum

information processing and phase coherent charge transport through an array of elastic scatterers.

Here, we extend that analogy by calculating an effective Shannon entropy for such an array and

examining its various properties. For single-moded transport, the Shannon entropy is given by

Hbinðjtj
2Þ ¼ �jtj2 log2 jtj

2�jrj2 log2 jrj
2, where jtj2 and jrj2 are the transmission and reflection probabil-

ities through the array of scatterers. A lower bound for Hbinðjtj
2Þ is found starting with the entropic

quantum uncertainty principle. An important result is that although evanescent channels (modes) have

jtj2 ¼ 1�jrj2-0, so that their own contribution to Hbinðjtj
2Þ-0, they nevertheless have a profound

influence on the total Hbinðjtj
2Þ of the array and its associated signal-to-noise ratio (SNR) since they

renormalize the transmission probabilities of the propagating modes. This is reminiscent of the well-

known fact that evanescent modes influence the conductance of a structure by renormalizing the

transmission probabilities of the propagating modes.

The numerical values of Hbinðjtj
2Þ and its SNR are strongly sensitive to the nature of the elastic

scatterers, i.e., whether they are attractive (negative potential), repulsive (positive potential), or a

combination of both. In samples with repulsive scatterers, the SNR can be tuned over a wide range by

applying a potential through a gate to change the scattering potentials from repulsive to attractive by

moving their energy levels with respect to the quasi-Fermi level in the sample. We also found that the

mean free path of an electron traversing a random array of elastic scatterers is the length scale at which

the sum of the cross-correlation coefficients of the effective spin components reaches a minimum. At

that point, the sum of the effective Heisenberg and Zeeman Hamiltonians associated with effective

spins describing the propagating channels, reaches a minimum. Hence the mean free path can be

viewed as an order parameter for a phase transition.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The effective spin concept is well known in the context of
quantum optics and has been frequently used to describe and
study spatial correlations between reflection and transmission
amplitudes of polarized photon beams interacting with a
combination of beam splitters, mirrors, and interferometers
[1–3]. This spin concept was also used recently to examine
entanglement between channels associated with propagating
modes in mesoscopic systems [4,5]. Recently, we use the effective
spin concept to examine the mathematical and physical analogy
between phase coherent single-moded charge transport in
mesoscopic systems and quantum operations on spin based
qubits [6]. We used this analogy to reformulate well-known
problems of tunneling through a delta scatterer, a resonant
ll rights reserved.
tunneling structure, a superlattice structure, and arrays of elastic
scatterers, in terms of specific unitary operations (rotations) of a
spinor on the Bloch sphere.

In this article, we extend the effective spin concept to address
multi-moded charge transport in mesoscopic systems. We
examine charge transport through two-dimensional random
arrays of delta-scatterers from the ballistic to the strong
localization regime and point out some interesting properties of
the Shannon entropy content of these arrays. Some additional
properties of the Shannon entropy of mesoscopic systems are
analyzed to assess if random arrays of elastic scatterers can mimic
quantum information processors. Somewhat expectedly, we
found that evanescent modes affect the Shannon entropy of the
array quite dramatically (even though their own individual
contributions to the Shannon entropy is nearly zero), just as they
affect the conductance of the array even though they themselves
do not conduct and carry current [7–10]. Bagwell [7] has shown
that evanescent states renormalize the coupling between propa-
gating sates leading to a decrease (increase) in the transmission
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coefficients of the latter in the case of attractive (repulsive)
scatterers. This results in the evanescent modes affecting both the
Shannon entropy and the conductance of the array.

This article is organized as follows. In Section 2, the effective
spin concept is introduced to describe coherent charge transport
through an arbitrary one-dimensional sample (array of scatterers)
as a sequence of unitary operations on an effective spin. Here, we
assume that there is a single propagating mode (single-moded
transport). Starting with the entropic quantum uncertainty
principle, lower bounds for the Shannon binary entropy are then
found. Section 3 presents numerical calculations of the Shannon
entropy of random arrays of two-dimensional elastic scatterers,
assuming multi-moded transport. Here, we show the importance
of evanescent modes and how they affect the calculations.
Additionally, we calculate the variance of the conductance, the
variance of the Shannon entropy, and the signal-to-noise ratio of
the entropy (defined as the ratio of its average over a large
number of samples and its variance) as a function of sample
length and the type of the impurities (repulsive, attractive, or a
combination of both). The cross-correlation of the effective spin
components are also calculated as a function of length. These
coefficients are used to interpret the transition from ballistic
transport, to weak and strong localization regimes in terms of
effective Heisenberg and Zeeman Hamiltonians for the collection
of effective spins associated with the propagating channels.
Finally, Section 4 contains our conclusions.
2. The effective spin approach

We briefly revisit the effective spin concept. In tunneling
problems, the transmission and reflection amplitudes of the
tunneling wave are usually calculated by the so-called ‘‘scattering
matrix approach’’ [11,12]. The scattering matrix relates the
incoming ðaþ ;b�Þ to outgoing wave amplitudes ðbþ ; a�Þ on both
sides of a scattering region (array of elastic scatterers), as shown
in Fig. 1, such that

jcðOUTÞS¼
bþ

a�

� �
¼ S

aþ

b�

� �
¼

t r0

r t0

� �
aþ

b�

� �
¼ SjcðINÞS; ð1Þ

where S is the scattering matrix.
Device 
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Fig. 1. The tunneling problem and its quantum computing gate equivalent. The scattering m

wave amplitudes. It can be viewed as the matrix representing the rotation of a qubit from
For single-moded transport, assuming an electron is incident
from the left, we obtain

jcl
ðINÞS¼

1

0

� �
ð2Þ

and

jcl
ðOUTÞS¼

t

r

� �
; ð3Þ

whereas, for an electron incident from the right, we have

jcr
ðINÞS¼

0

1

� �
ð4Þ

and

jcr
ðOUTÞS¼

r0

t0

� �
: ð5Þ

The tunneling problem is completely characterized by the
amplitudes ðt; rÞ or ðr0; t0Þ depending on the direction of incidence
of the incoming electron.

Without any loss of generality, we can always think of the two-
component column vector jcðOUTÞS as a spinor, since it is
normalized in the case of coherent transport. The normalization
follows from the unitarity of the scattering matrix, i.e., SyS¼ I.
Furthermore, the spinor jcðOUTÞS can be thought as the output of
a one-qubit quantum gate whose input is the spinor
jcðINÞS¼ ð1;0Þy or ð0;1Þy (where y stands for Hermitian con-
jugate) depending on the direction of propagation of the incident
electron. The 2� 2 unitary matrix linking the spinors jcðINÞS and
jcðOUTÞS can therefore be viewed as the matrix characterizing
rotation of a qubit whose initial state was jcðINÞS and whose final
state becomes jcðOUTÞS. This matrix is also the scattering matrix
describing the tunneling problem.

2.1. The effective spin components and their physical interpretation

We refer to the ð2� 1Þ column vector jcl
ðOUTÞS in Eq. (3) as

the effective spin whose components characterize completely the
scattering amplitudes of the tunneling electron. For an arbitrary
potential energy profile EcðxÞ describing the potential landscape of
an array of elastic scatterers, the amplitude jcl

ðOUTÞS can be
found by successively cascading scattering matrices associated
Q.C. 

Gate r

t=〉
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atrix associated with a device relates the incoming (aþ , b�) to the outgoing (a� , bþ )

the initial state jcðINÞS to the final state jcðOUTÞS.
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Fig. 2. Bloch sphere representation of the effective spin (qubit) jcðOUTÞS. The

radius of the sphere is equal to 1.
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Fig. 3. In a single-moded Aharamov–Bohm interferometer, a wave incident from

the left on a scattering region located at the leftmost 3-way splitter is transmitted

with amplitude t in the upper arm and amplitude r in the lower arm. If no

reflection in the left lead is allowed, jtj2þjrj2 ¼ 1. The interference pattern at point

P at the rightmost 3-way splitter has components with amplitudes proportional to

the effective spin components associative to the effective spinor describing the

scattering problem.
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with ‘‘subsections’’ within each of which EcðxÞ is approximated by
constant values Ec1, Ec2, Ec3; . . . ; Ecn [11,12]. The evolution of the
pure state jcl

ðOUTÞS after crossing a number of subsections can
be represented using the Bloch sphere concept in which the
spinor is parameterized as follows [13,14]:

jcl
ðOUTÞS¼ eig cos

y
2
j0Sþsin

y
2

eijj1S
� �

; ð6Þ

where g is an arbitrary phase factor and the angles ðj; yÞ are the
azimuthal and polar angles, as shown in Fig. 2.

In Eq. (6), j0S and j1S are the ð2� 1Þ column vectors ð1;0Þy and
ð0;1Þy respectively, associated with the north and south poles of
the Bloch sphere. They are mutually orthogonal, i.e., their inner
product o0j14 ¼ 0 [13].

To complete the effective spin picture, we consider the
following 2� 2 matrix [15]:

r¼ jcl
ðOUTÞS/cl

ðOUTÞj ¼
t

r

� �
ðt�r�Þ ¼

jtj2 tr�

rt� jrj2

 !
: ð7Þ

Using this density matrix and the Pauli spin matrices (sx, sy,
sz), the effective ‘‘spin components’’ associated with the spinor
jcl
ðOUTÞS are given by

/SxS¼
‘
2

TrðrsxÞ ¼
‘
2
ðtr�þrt�Þ ¼ ‘ Reðrt�Þ ¼ ‘ Reðr�tÞ; ð8Þ

/SyS¼
‘
2

TrðrsyÞ ¼
‘
2

iðtr��rt�Þ ¼ ‘ Imðrt�Þ ¼�‘ Imðr�tÞ; ð9Þ

and

/SzS¼
‘
2

TrðrszÞ ¼
‘
2
ðjtj2�jrj2Þ ¼

‘
2
ð1�2jrj2Þ ¼

‘
2
ð2jtj2�1Þ: ð10Þ

For an electron incident from the right, jcr
ðINÞS¼ j1S, and the

density matrix r0ð ¼ jcr
ðOUTÞS/cr

ðOUTÞjÞ is such that r0 ¼ 1�r,
where r is given by Eq. (7) and the components /SxS, /SyS and
/SzS are just the negative of the values in Eqs. (8)–(10).
Therefore, the two spinors corresponding to jcl

ðOUTÞS and
jcr
ðOUTÞS are mirror images of each other, corresponding to a

reflection through the origin of the Bloch sphere. This means that
jcl
ðOUTÞS and jcr

ðOUTÞS are orthogonal, which they must be
because the scattering matrix is unitary. Furthermore, using
Eqs. (8)–(10), we get

/SxS2
þ/SyS2

þ/SzS2
¼ ‘ 2=4: ð11Þ
Since ð/SxS;/SyS;/SzSÞ are proportional to the components
of the spinor jcðOUTÞS on the Bloch sphere, Eq. (11) simply states
that the spinor stays on the Bloch sphere during cascading of
scattering matrices. This is expected for the case of coherent
transport. Furthermore, since /S2

xS¼/S2
yS¼/S2

zS¼ ‘ 2=4 Trr¼
‘ 2=4, the square of the variance of the effective spin components
D2

x ¼/S2
xS�/SxS2 and D2

y ¼/S2
yS�/SyS2 can easily be calculated

as

D2
xþD

2
y ¼

‘ 2

2
ð1�2jrj2jtj2Þ: ð12Þ

Since jrj2jtj2 has a maximum when jrj ¼ jtj ¼ 1=
ffiffiffi
2
p

, D2
xþD

2
y

reaches a minimum of ‘ 2=4 when the spinor is in the equatorial
plane of the Bloch sphere.

2.2. Physical interpretation of the effective components

The effective spin components /SxS and /SyS appear in the
calculation of many physical quantities describing charge trans-
port through mesoscopic systems. As an example consider an
Aharanov–Bohm interferometer shown in Fig. 3 for which there is
a single propagating mode in both leads and also in the upper and
lower arms of the interferometer. Neglecting the effects of
multiple reflections and assuming the incident wave can only be
transmitted in the upper branch (with probability amplitude t) or
reflected in the lower branch (with probability amplitude r), the
total amplitude of the wave at point P, is given by

cP ¼ reiklLþteikuL; ð13Þ

where kl and ku are the wavevectors of the propagating mode in
the lower and upper branches of the ring, respectively. The length
of each arm is assumed to be the same but the following
argument could be extended to interferometers with different
arm lengths as well. The probability density at point P is therefore
given by

jcPj
2 ¼ jrj2þjtj2þr�teiðku�klÞLþrt�eiðkl�kuÞL; ð14Þ

where kd ¼ ku�kl.
Since jrj2þjtj2 ¼ 1, we get

jcPj
2 ¼ 1þ2 Reðrt�Þ cos kdLþ2 Imðrt�Þ sin kdL: ð15Þ

Hence, the interference pattern at the point of exit contains two
terms whose amplitudes are proportional to the effective spin
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components /SxS and /SyS. Eq. (15) can be rewritten as follows:

jcPðkdLÞj2 ¼ 1þ
2

‘
/SxS cos kdLþ

2

‘
/SyS sin kdL ð16Þ

or equivalently,

jcPðkdLÞj2 ¼ 1þTrðrsxÞ cos kdLþTrðrsyÞ cos kdL: ð17Þ

Furthermore, the unitarity of the scattering matrix also
leads to

/SxS2þ/SyS2 ¼ ‘ 2
jtj2ð1�jtj2Þ: ð18Þ

Eq. (16) shows that the projection of the spinor in the
equatorial plane of the Bloch sphere reaches a maximum when
jtj ¼ jrj ¼ 1=

ffiffiffi
2
p

. Actually, /SxS2
þ/SyS2 is proportional to

jtj2ð1�jtj2Þ, i.e., the low frequency shot noise power for the
tunneling electron [16].

The angles ðg; y;jÞ appearing in the generic expression of the
spinor (or qubit) in Eq. (6) can be expressed in terms of the phases
and magnitudes of the reflection and transmission coefficients:

jcl
ðOUTÞS¼

t

r

� �
¼
jtjeifT

jrjeifR

" #
¼ eifT

jtj

jrjeiðfR�fT Þ

" #
; ð19Þ

where fR and fT are the phases of the reflection and transmission
amplitudes, respectively.

We get

g¼fT ð20Þ

and

f¼fR�fT : ð21Þ

Furthermore,

jtj ¼ cos
y
2
; ð22Þ

jrj ¼ sin
y
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�jtj2

q
ð23Þ

and therefore,

y
2
¼ tan�1 jrj

jtj

� �
: ð24Þ

Eqs. (8)–(10) are therefore equivalent to

/SxS¼
‘
2

siny cosj; ð25Þ

/SyS¼
‘
2

siny sinj ð26Þ

and

/SzS¼
‘
2

cosy; ð27Þ

Eqs. (8) and (9) clearly show that the averages /SxS and /SyS
contain more information than the sample conductance alone.
The latter depends only on the magnitude of transmission jtj or
reflection jrj in the Landauer picture [17–20], whereas /SxS and
/SyS depend on the phase relationship between t and r as well.
The phase relationship is a strong function of the energy of the
incident electron. At non zero temperature, there will be a
thermal spread in the energy of the incident electron which will
lead to a rapid wash out with temperature of the components
/SxS and /SyS, i.e., the off-diagonal components of the density
matrix r. Note that while /SxS and /SyS depend on the off-
diagonal components of the density matrix and are very energy
sensitive, /SzS depends only on the diagonal components of the
density matrix and is much less energy sensitive.
2.3. The Shannon entropy and the entropic quantum uncertainty

principle

For a single-moded structure, the outcome of a measurement
of the scattered amplitudes will lead to the probabilities jrj2 and
jtj2. The information content of this probability distribution is
given by the binary entropy [13]

Hbinðjtj
2Þ ¼ �jtj2 log2 jtj

2�jrj2 log2 jrj
2; ð28Þ

which is a special case of the Shannon entropy for the case of a
random variable with only two outcomes, jrj2 or jtj2.

Eq. (26) shows that Hbinðjtj
2Þ ¼Hbinðjrj

2Þ, since jrj2þjtj2 ¼ 1.
Therefore, Hbinðjtj

2Þ reaches its maximum value of 1 when
jrj2 ¼ jtj2 ¼ 1=2. At this point, the conductance of the sample is
equal to e2=h. This occurs when the sample length is equal to the
elastic mean free path of the scattering region. Stated otherwise,
the information content in jcðOUTÞS is maximum when the latter
lies in the equatorial plane of the Bloch sphere. When this occurs,
the square of the norm of the effective spin, i.e., /SxS2

þ/SyS2 is
proportional to jtj2ð1�jtj2Þ. The latter is proportional to the shot
noise power spectrum of the scattering region and reaches a
maximum value of 0.25 when jrj2 ¼ jtj2 ¼ 1=2.

Next, we derive a lower bound for Hbinðjtj
2Þ starting with the

entropic quantum uncertainty principle [13]. The latter states that,
if C ¼

P
ccjcS/cj and D¼

P
ddjdS/dj are the spectral decomposi-

tions for C and D, and f ðC;DÞ ¼maxðc;dÞj/cjdSj is the maximum
fidelity between any two eigenvectors of jcS and jdS, then

HðCÞþHðDÞZ2 log2
1

f ðC;DÞ

� �
; ð29Þ

where

HðCÞþHðDÞ ¼�
X
ðc;dÞ

pðcÞqðdÞ log2ðpðcÞqðdÞÞ ð30Þ

and pðcÞqðdÞ ¼ j/cjcS/cjdSj2.
Here, jcS is the quantum state of the system, pðcÞ is the

probability distribution associated with a measurement of C

with Shannon entropy HðCÞ, and qðdÞ the probability distri-
bution associated with a measurement of D with Shannon entropy
HðDÞ.

If we use the operator C ¼ sx and D¼ sz, then f ðsx;szÞ ¼ 1=
ffiffiffi
2
p

.
The inequality (29), where the pure state of the quantum system
jcS is the effective spin state jcðOUTÞS, leads to

gð/SxSÞrHbinðjtj
2Þ; ð31Þ

where

gð/SxSÞ ¼
1

2
1þ

2

‘
/SxS

� �
log2 1þ

2

‘
/SxS

� �

þ
1

2
1�

2

‘
/SxS

� �
log2 1�

2

‘
/SxS

� �
: ð32Þ

Similarly, for C ¼ sy and D¼ sz in the inequality (29), we get

gð/SySÞrHbinðjtj
2Þ: ð33Þ

The two inequalities (31) and (33) can be replaced by the
single inequality

maxðgð/SxSÞ; gð/SySÞÞrHbinðjtj
2Þ ð34Þ

producing a lower bound for the binary entropy.



ARTICLE IN PRESS

W. Liu et al. / Physica E 42 (2010) 1520–15301524
The inequalities (31) and (33) can be recast in a more
physically appealing form. Using Eq. (16), we get

jcPð2npÞj2 ¼ 1þ
2

‘
/SxS; ð35Þ

cP ð2nþ1Þ
p
2

� �			 			2 ¼ 1þ
2

‘
/SyS; ð36Þ

jcPðð2nþ1ÞpÞj2 ¼ 1�
2

‘
/SxS; ð37Þ

and

cP ð2nþ1Þ
3p
2

� �				
				
2

¼ 1�
2

‘
/SyS: ð38Þ

Using those last four equations, the inequality (31) can be
recast as follows:

1
2½jcPð2npÞj2 log2jcPð2npÞj2þjcPðð2nþ1ÞpÞj2

log2jcPðð2nþ1ÞpÞj2�rHbinðjtj
2Þ: ð39Þ

Similarly, the inequality (33) becomes

1

2
cP ð2nþ1Þ

p
2

� �			 			2 log2 cP ð2nþ1Þ
p
2

� �			 			2�

þ cP ð2nþ1Þ
3p
2

� �				
				
2

log2 cP ð2nþ1Þ
3p
2

� �				
				
2�

rHbinðjtj
2Þ: ð40Þ

In the interferometer shown in Fig. 3, a measurement of the
intensity of the interfering beam at point P, while adjusting the
phase shift in both arms of the interferometer with independent
gates, can provide lower bounds for the Shannon entropy of an
array of elastic scatterers.

Finally, another relation between the effective spin compo-
nents /SxS and /SyS can be found starting with the inequality
(29) with C ¼ sx and D¼ sy. In that case, we obtain

hð/SxS;/SySÞr4; ð41Þ

where hð/SxS;/SySÞ is equal to

ð1þCþ ;�ð/SxS;/SySÞÞlog2ð1þCþ ;�ð/SxS;/SySÞÞ

þð1þCþ ;þ ð/SxS;/SySÞÞlog2ð1þCþ ;þ ð/SxS;/SySÞÞ
þð1þC�;�ð/SxS;/SySÞÞlog2ð1þC�;�ð/SxS;/SySÞÞ
þð1þC�;þ ð/SxS;/SySÞÞlog2ð1þC�;þ ð/SxS;/SySÞÞ;

where

Cþ ;�ð/SxS;/SySÞ ¼
2

‘
/SxS�/SyS�

2

‘
/SxS/SyS

� �
; ð42Þ

Cþ ;þ ð/SxS;/SySÞ ¼
2

‘
/SxSþ/SySþ

2

‘
/SxS/SyS

� �
; ð43Þ

C�;�ðoSx4 ;oSy4 Þ ¼
2

‘
�/SxS�/SySþ

2

‘
/SxS/SyS

� �
; ð44Þ

and

Cþ ;�ð/SxS;/SySÞ ¼
2

‘
�/SxSþ/SyS�

2

‘
/SxS/SyS

� �
: ð45Þ

Using Eqs. (35)-(38), the inequality (41) can be recast as
follows

jcPð2npÞj2 cP ð2nþ1Þ
p
2

� �			 			2log2 jcPð2npÞj2 cP ð2nþ1Þ
p
2

� �			 			2� �

þjcPð2npÞj2 cP ð2nþ1Þ
3p
2

� �				
				
2

log2 jcPð2npÞj2 cP ð2nþ1Þ
3p
2

� �				
				2

 !
þjcPðð2nþ1ÞpÞj2 cP ð2nþ1Þ
p
2

� �			 			2
log2 jcPðð2nþ1ÞpÞj2 cP ð2nþ1Þ

p
2

� �			 			2� �

þjcPðð2nþ1ÞpÞj2 cPðð2nþ1Þ
3p
2
Þ

				
				
2

log2ðjcPðð2nþ1ÞpÞj2

cP ð2nþ1Þ
3p
2
Þ

� 				2
					

!
r4: ð46Þ

2.4. The Shannon entropy for multi-moded structures

Eq. (1) holds for a structure with M propagating modes on
either sides of the scattering region. In that case, the ðaþ ; b�Þ
incoming and ðbþ ; a�Þ outgoing wave amplitudes are column
vectors of size (M�1) and the r; r0; t; t0 are M �M square matrices.
If the electron is incident from the i th mode in the left contact of
the interferometer in Fig. 3, and the leads and branches have M

propagating modes, it can be easily shown that the wave intensity
at point P next to the right lead is given by

jcPj
2 ¼ 1þ

X
j

r�jitjie
iðku

j
�kl

j
ÞL
þ
X

j

t�jirjie
�iðku

j
�kl

j
ÞL; ð47Þ

where the rji’s and tji’s are the reflection and transmission
amplitudes into mode j for a mode incident in channel i. The
quantities ku

j ’s and kl
j’s are the wavevectors associated with mode

j in the upper and lower arm of the ring, respectively. If we
independently adjust the gate potentials in both arms to make
ku

j ¼ kl
j, then we get

jcPj
2 ¼ 1þ

2

‘
/Si

xS; ð48Þ

where

Si
x ¼ ‘Re

X
j

r�jitji

0
@

1
A; ð49Þ

which we write in the more compact form

Si
x ¼ ‘Reðryi tiÞ; ð50Þ

where ryi is the ð1�MÞ row vector

ryi ¼ ðr
�
1i; r
�
2i; . . . ; r

�
MiÞ; ð51Þ

and ti is the ðM � 1Þ column vector

ti ¼ ðt1i; t2i; . . . ; tMiÞ
>; ð52Þ

where > stands for the transpose operation.
By analogy, extending Eq. (9) to the multi-moded case, we

introduce the other two effective spin components for the i th
propagating mode,

Si
y ¼�‘ Imðryi tiÞ ¼�‘ Im

X
j

r�jitji

0
@

1
A ð53Þ

and

Si
z ¼

‘
2

2
X

j

jtjij2�1

0
@

1
A: ð54Þ

The coefficients rji and tji satisfy the following relations:X
j

ðjtjij
2þjrjij

2Þ ¼ 1; ð55Þ

for i¼ 1;2; . . . ;M.
Using the Cauchy-Schwartz’s inequality, it was shown in Ref. [6]

Si2

x þSi2

y þSi2

z r
‘ 2

4
: ð56Þ



ARTICLE IN PRESS

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N

g (<Sx>)

g (<Sy>)

Hbin
QM

Fig. 4. Plot of the quantities gð/SxSÞ and gð/SySÞ and the Shannon binary entropy

HQM
bin as a function of the number of impurities crossed for a specific array of one-

dimensional delta-scatterers.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
bin
QM

g (<Sx>)

g (<Sy>)

Hbin
CL

Λel

W. Liu et al. / Physica E 42 (2010) 1520–1530 1525
By introducing the vector ~ni with the three components

~ni ¼
2

‘
ðSi

x; S
i
y; S

i
zÞ ð57Þ

we find that the inequality (56) simply states that ~n i is a vector
within the Bloch ball, i.e., the interior of the Bloch sphere. This
formalism is equivalent to a density matrix description for each
mode by a two-dimensional density matrix given by

ri ¼
1
2ðIþ~ni:~sÞ; ð58Þ

where each channel is described as a mixed-state because of the
coupling between modes inside the device.

In the next section, we use the effective spin formalism to
revisit the problem of coherent charge transport through an array
of two-dimensional elastic scatterers from a quantum informa-
tion perspective. We calculate the length dependence of the
Shannon entropy H (averaged over a large number of samples), its
variance DH, and the signal to noise ratio H=DH, starting with the
definition

H¼
X

i

Hi ¼�
X

i

½jrij
2 log2jrij

2þjtij
2 log2jtij

2�; ð59Þ

where jrij
2 ¼

P
j jrjij

2 and jtij
2 ¼

P
jjtjij

2.
Finally, we define cross-correlation coefficients

Gaði; jÞ ¼Gaðj; iÞ ¼ Si
aSj

a�Si
a :S

j
a ; ð60Þ

where a¼ x, y, or z and the indices i and j vary from 1 to M.
Performing a double summation over i and j (with ia j) and

also summing over x, y, and z, we get

Heff ¼H?eff þHJ
eff ; ð61Þ

where

H?eff ¼
X

i

X
jðja iÞ

½Gxxði; jÞþGyyði; jÞ�; ð62Þ

and

HJ
eff ¼

X
i

X
jðja iÞ

Gzzði; jÞ: ð63Þ

Heff can also be written explicitly as follows:

Heff ¼
X

i

X
jðja iÞ

~S
i
:~S

j
�
X

i

~Si : ~bi
eff ; ð64Þ

with

~S
i

¼ ðSi
x ; S

i
y ; S

i
z Þ ð65Þ

and

~beff

i
¼
X

jðja iÞ

~S
j

: ð66Þ

The quantity Heff can be interpreted as the sum of two terms:

(a)
P

i

P
jðja iÞ

~S
i
:~S

j
is an effective Heisenberg Hamiltonian with a

common exchange interaction between the effective spins and (b)

�
P

i
~S

i
:~bi is similar to the Zeeman interaction for the i th effective

spin in the effective magnetic field ~bi generated by the other
effective spin components. As will be shown in the numerical
simulations in the next section, the quantity Heff reaches a

minimum for sample length equal to the elastic mean-free path.
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N

Fig. 5. Plot as a function of sample length of the average (over an ensemble of 105

samples of one-dimensional delta-scatterers) of the quantities gð/SxSÞ and

gð/SySÞ. Also shown are the average values of the classical HCL
binðjtj

2Þ and

quantum-mechanical HQM
bin ðjtj

2Þ binary entropies.
3. Numerical examples

Transport through random arrays of delta scatterers: (a) Single-

moded structures (one propagating mode—zero evanescent state):

We first consider a random array of delta-scatterers of strength
VIdðx�ðxi
0þði�1ÞaÞ, where VI is selected to be 0.3 eV Å and xi

0 is the
location of the i th impurity located in the interval ½ði�1Þa; ia�.
Each impurity location is generated using a uniform random
number in each interval. The length of each subsection is set equal
to 237 Å and the wavevector of the incident electron
k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m%EF

p
=‘ , is selected such that ka¼ p, for an incident

energy EF of 10 meV and m% ¼ 0:067m0, the electron effective
mass in GaAs.

While averaging over 105 samples, it was found in Ref. [6] that
the average conductance reaches a value of e2=h for an elastic
mean free path equal to 23� 237 Å� 0:55mm. In Fig. 4, we
illustrate the validity of the inequalities (31) and (33) for a specific
sample. The following features appear: (a) the Shannon entropy is
a rapidly fluctuating function of the sample length. For instance,
close to N¼ 20, HQM

bin varies abruptly from nearly 0 to its maximum
value of 1. (b) The functions gð/SxSÞ and gð/SySÞ are quite
different in the regime extending from the ballistic regime to
sample length equal to a few times the elastic mean free path.
(c) HQM

bin nearly coincides with either gð/SxSÞ or gð/SySÞ for specific
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sample lengths. (d) HQM
bin is substantially smaller than unity for

sample length well into the strong localization regime.
Fig. 5 illustrates the validity of the inequalities (31) and (33)

after averaging both sides over 105 arrays. In that case, the
average values of gð/SxSÞ and gð/SySÞ are virtually equal. Also
shown in Fig. 5 are the binary entropies calculated after cascading
either probability HCL

bin or amplitude HQM
bin scattering matrices; HQM

bin

includes the effects of multiple reflections between scatterers,
whereas HCL

bin does not. The latter does not vary much from sample
to sample and reaches a maximum value of 1 for N¼Lel. On the
other hand, HQM

bin (averaged over many samples) peaks for sample
length slightly below the elastic mean free path and its maximum
value is below 0.8. Furthermore, HQM

bin is substantially below HCL
bin

for sample length deeply into the strong localization regime, i.e.,
for N4Lel ¼Lloc .

Finally, Fig. 6 is a plot of inequality (41) where the function
hðoSx4 ;oSy4Þwas calculated for two specific samples (broken
lines). The inequality (41) is nearly an equality at some specific
value of the sample length. Also shown (solid line) is the value of
hðoSx4 ;oSy4Þ after averaging over an ensemble of 105 arrays.

(b) Multi-moded structures: We used the scattering-matrix
formalism outlined in Refs. [11,12] to calculate the reflection and
transmission amplitudes as a function of sample length of an
ensemble of two-dimensional random arrays of delta-scatterers.
The direction of propagation of the current is along the x-axis and
a particle-in-a-box model is used along the width of the wire
(y-axis). Along the x-axis, the impurities are separated evenly and

located halfway in each segment of length a¼ 200 A
˚

. In the
y-direction, a uniform probability distribution is used across the

width of the wire y¼ 2500 A
˚

. The effective mass in the channel is
assumed to be m� ¼ 0:067m0 which corresponds to a GaAs
channel. The scattering potential of each impurity is given by

Vimpðx; yÞ ¼ VIdðx�xiÞdðy�yiÞ; ð67Þ

with VI ¼ 7200 eV A
˚

2

i.e., either repulsive (positive VI) or
attractive (negative VI) scatterers, and ðxi; yiÞ are the coordinates
of the i th impurity as described above.

Despite the fact that they do not carry any current, evanescent
modes can have a very profound effect on the calculation of the
conductance in mesoscopic systems since they can renormalize
the transmission and reflection coefficients associated with the
current-carrying propagating modes [7–10]. Hereafter, we ana-
lyze the influence of propagating modes on the Shannon entropy
content of two-dimensional random arrays of elastic scatterers.
All physical quantities were calculated as averages (quantities
indicated with a horizontal bar) over 104 samples. The Fermi level
was set equal 1 meV above M2E1 (with M¼ 7), the threshold of
the seventh lowest free propagating mode in the channel. E1 is the
energy threshold for free propagation in the lowest mode, i.e.,
E1 ¼ p2‘ 2=2m�W2 ¼ 90meV.

Fig. 7 is a plot of the conductance versus number of scatterers
crossed in the channel for samples with either repulsive, or
attractive scatterers, or a 50%–50% mixture of both types. The
simulations included the seven lowest evanescent states in the
channel. We have checked that all the results discussed hereafter
did not change much when additional evanescent modes were
included in the simulations. The elastic mean-free path was
estimated by finding the closest integer (number of scatterers
crossed) for which the conductance is reduced to M/2 (in units of
e2=h). The actual mean free path is then obtained by multiplying
this number by the quantity að ¼ 200

˚
AÞ, which is the size of each

subsection containing a single scatterer along the x-direction.
From Fig. 7, the elastic mean-free path Lel is found equal to 9, 14,
and 47, for samples with all attractive, half attractive-half
repulsive, and all repulsive scatterers, respectively. The dot–
dash line shows the result obtained for samples with half
attractive-half repulsive scatterers when only the seven
propagating modes are included in the simulations. These
results stress the importance of including the effect of the
evanescent modes when calculating the transmission
amplitudes tij’s of the propagating modes [7–10]. The variance
of the conductance for the samples described above is plotted
in Fig. 8. Interestingly, the universality of the conductance
fluctuations, i.e., a constant value for Dg in the weak
localization regime (samples with length between the elastic
mean free path Lel and the localization length Lloc ¼MLel) is only

valid for samples with repulsive scatterers. In contrast, if we exclude
the evanescent states, then both the conductance and its variance
become nearly independent of the nature of the scatterer
potential and the universality of the conductance fluctuations is
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Fig. 8. Variance of the conductance fluctuations (in units of e2=h) versus number

of scatterers crossed. The dashed and full lines correspond to the case of repulsive
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using seven propagating modes only with samples containing half-attractive and
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upheld for all types of scatterers – both attractive and repulsive.
We speculate that this is due to the fact that in the case of
attractive scatterers, bound states form, which interact with
evanescent modes and change the nature of transport in a very
non-trivial way. Therefore, these simulations highlight the
importance of evanescent modes.

Fig. 9 is a plot of the average of the Shannon entropy versus
length for the samples described above. The maximum of the
average Shannon entropy occurs slightly below M¼ 7, the
number of propagating modes in the samples. We expect this to
happen if we cascade probability scattering matrices instead of
amplitude scattering matrices. One effect of the quantum
interferences is to lower the value of the maximum Shannon
entropy of arrays of elastic scatterers. The maximum always
occurs when the sample length is equal to the electron mean free
path, and its value is virtually independent of the nature of the
scatterers. As shown in Fig. 9, it is found that, past its peak, the
Shannon entropy is substantially larger for samples containing
repulsive scatterers than for sample containing attractive
scatterers.

Fig. 10 is a plot of the variance of the Shannon entropy versus
number of scatterers crossed. It reaches a minimum at a value
equal to the elastic mean free path. The minimum in DH, � 0:2, is
nearly independent of the nature of the scatterers and about equal
to the value obtained for DHmin for the case when there is only
one propagating mode in the channel [6]. Furthermore, in
the weak localization regime, i.e., for samples with number
of scatterers in the range LeloNoLloc ¼MLel, the value of
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DH is not universal. For N450, i.e., in the weak localization
regime, DH is the lowest for the case of samples with repulsive
scatterers.

When considering arrays of elastic scatterers as quantum
information processors, it would be best to use samples with
length for which the signal to noise ratio, SNR¼/HS=DH reaches
a maximum. Using the results from Figs. 9 and 10, we plot in
Fig. 11 the length dependence of the SNR for the various samples
considered above. This figure indicates that SNR reaches a
maximum for sample length equal to the electron mean free
path independent of the nature of the scatterers. The highest peak
is obtained for a sample with repulsive scatterers and the lowest
peak value is obtained for sample containing a 50%–50% ratio of
repulsive and attractive scatterers.

Fig. 12 is a plot of the ratio of the signal to noise ratios
calculated for samples with repulsive scatterers SNRR compared to
samples with attractive scatterers SNRA. The ratio SNRR=SNRA

drops from a factor 10 for sample length equal to the elastic mean
free path for arrays with repulsive scatterers (i.e., Lel � 47).
Therefore, as quantum information processors, there is a larger
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Fig. 12. Plot of the ratio SNRR=SNRA versus number of scatterers crossed, where

SNRR and SNRA are the signal to noise ratio for the Shannon entropy calculated for

samples with repulsive and attractive scatterers, respectively.
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Fig. 13. Plot of the average over 104 samples of Gxxð1;2Þ (dashed line), Gxxð1;3Þ

(full line), and Gxxð2;3Þ (dotted line), versus the number of scatterers crossed.
window of tunability of the SNR of the Shannon entropy for
samples with attractive scatterers if surrounding gates can be
used to tune the nature of the impurity potential from repulsive to
attractive by moving their energy states around the quasi-Fermi
level throughout the sample. Fig. 12 also shows that for
N4Lel � 47, i.e., in the weak localization regime, the ratio
SNRR=SNRA is virtually independent of the sample length.

Next, we plot the length dependence of the cross-correlations
coefficients defined in Eq. (60). The sample width was kept at
2500

˚
A and the Fermi level was set 0.3 meV above

9 E1 ¼ 0:81 meV, the threshold energy for three propagating
modes in the channel. The length dependence of the average
over 104 samples for Gxxði; jÞ, Gyyði; jÞ, and Gzzði; jÞ, is shown in
Figs. 13, 14, and 15, respectively. The scatterers were assumed to
be 100% repulsive and only propagating modes were considered
in the simulations. A plot of the average conductance versus
number of scatterers crossed reveal an elastic mean free path of
10 for these samples. The individual cross-correlation coefficients
have either positive or negative values depending on the indices
(i; j). As shown in Figs. 13, 14, and 15, the cross-correlation
coefficients Gaað1;3Þ, Gaað2;3Þ for a¼ x, y, and z are nearly
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Fig. 14. Plot of the average over 104 samples of Gyyð1;2Þ (dashed line), Gyyð1;3Þ

(full line), and Gyyð2;3Þ (dotted line), versus the number of scatterers crossed.
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Fig. 15. Plot of the average over 104 samples of Gzzð1;2Þ (dashed line), Gzzð1;3Þ

(full line), and Gzzð2;3Þ (dotted line), versus the number of scatterers crossed.



ARTICLE IN PRESS

0 20 40 60 80 100
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

N

H
ef

f (
un

its
 o

f _ h2 /
4)

Fig. 16. Plot of the average over 104 samples of H?eff (full line), HJ
eff (dotted line),

and Heff ¼H?eff + HJ
eff (dashed line), versus the number of impurities crossed. Heff

reaches a minimum for sample length equal to the elastic mean free path (N ¼ 10).

0 20 40 60 80 100
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

N

b e
ff,

x (
un

its
 o

f _ h/
2)

Fig. 17. Plot of length dependence of the x-component of the effective magnetic

field beff ;x associated with the three lowest propagating modes. The dashed, full,
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Fig. 18. Plot of length dependence of the y-component of the effective magnetic
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Fig. 19. Plot of length dependence of the z-component of the effective magnetic

field beff ;z associated to the three lowest propagating modes. The dashed, full, and
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W. Liu et al. / Physica E 42 (2010) 1520–1530 1529
identical and markedly different from Gaað1;3Þ. These specific
features require further investigation, but are obviously related to
the number of nodes in the transverse part of the wavefunction
associated with each propagating channel. These transverse
wavefunctions control the amount of overlap between subbands
in the wire and hence the amount of correlations between the
transmission and reflection coefficients.

Next, we focus on a global property of the cross-correlation
coefficients by summing them with equal weight over the indices
i and j (with ia j), a quantity which we called Heff . The latter was
found to reach a minimum at the value of the elastic mean-free
path, as shown in Fig. 16. This specific feature was also found
when considering samples with different ratios of repulsive and
attractive impurities and with different number of propagating
modes in the channel. Also shown in Fig. 16 as full and dotted
lines are the contributions to H?eff and HJ

eff , as defined in Eqs. (62)
and (63), respectively. The contribution to HJ

eff which character-
izes the correlation of the effective spin components in the
equatorial plane of the Bloch sphere is always negative. This
means that the projections in the equatorial plane of the average
of the effective spin components make an angle larger than 903.
H?eff , on the other hand, is mostly positive because the average of
the projections of the effective spin z-components gradually move
from the North pole to the South pole as the sample length
increases.

Finally, the length dependence of the x, y, and z components
of the effective magnetic field defined in Eq. (66) and acting on the
effective spinors associated with the propagating modes
are shown in Figs. 17, 18, and 19, respectively. For all three
effective spins, beff ;z start with a maximum value of 2
(in units of ‘ =2) in the ballistic regime, as all effective spins are
at the North pole on the Bloch sphere. As the length of the sample
increases, all beff ;z’s smoothly decay to a minimum value of �2
(in units of ‘ =2) as all three effective spins eventually reach the
South pole as the sample length goes far into the strong
localization regime. The x and y components of the effective
magnetic field start both from zero in the ballistic regime as the
effective spins are at the North pole. The amplitudes of beff ;x and
beff ;y are the largest for sample length below the elastic mean free
path as the effective spins spiral down around the z axis of the
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Bloch sphere as they penetrate into the Bloch ball towards
the equatorial plane. These oscillations in beff ;x and beff ;y

quickly die out for sample length in the weak localization
regime and are virtually zero once into the strong localization
regime. Therefore, the plots in Figs. 17, 18 and 19 show the
richness in the behavior of the cross-correlation coefficients as we
vary the sample length from the ballistic regime to a few times
the elastic mean free path.
4. Conclusions

Using an effective spin concept, we have examined the
potential use of random arrays of elastic scatterers as quantum
information processors by calculating the properties of their
Shannon entropy Hbinðjtj

2Þ assuming phase coherent charge
transport. A lower bound for Hbinðjtj

2Þ is found starting with the
entropic quantum uncertainty principle. Evanescent modes
strongly affect the Shannon entropy and its associated signal-to-
noise ratio (SNR). The numerical values for these quantities are
strongly sensitive to the nature of the scatterers, i.e., whether they
are attractive, repulsive, or a combination of both. As quantum
information processors, there is a large window of tunability of
the SNR of the Shannon entropy for samples with repulsive
scatterers if the action of surrounding gates can be used to change
the scattering potential from repulsive to attractive by moving
their energy levels with respect to the quasi-Fermi level
throughout the sample. It is found that the mean free path of
random array of elastic scatterers is the length scale at which the
sum of the cross-correlations coefficients of the effective spin
components reaches a minimum. This result can be interpreted as
a minimum energy state for the sum of effective Heisenberg and
Zeeman Hamiltonians associated with the effective spins describ-
ing the propagating channels in the transport problem.

Since Heff can be written as sum of a terms resembling three-
dimensional Heisenberg and Zeeman Hamiltonians as shown in
Eq. (64), the numerical simulations reported here suggest an
unexpected connection between phase transition phenomena and
coherent charge transport through arrays of random scatterers.
This analogy would need to be explored in further detail.

Even though the analysis of this paper is based on the effective
spin concept for electron waves, the latter can be readily extended
to the analysis of the propagation of radiofrequency signals in
microwave cavities, or photons through optical waveguides. In
the latter, the arrays of elastic scatterers considered in this paper
could be replaced by such entities as photonic crystals [21].
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