Chapter 3: The Analysis of
Variance (a Single Factor)




What If There Are More Than Two

Factor Levels?

The t-test does not directly apply

There are lots of practical situations where there are
either more than two levels of interest, or there are
several factors of simultaneous interest

The analysis of variance (ANOVA) is the appropriate
analysis “engine” for these types of experiments

The ANOVA was developed by Fisher in the early
1920s, and initially applied to agricultural experiments

Used extensively today for industrial experiments



ANOVA

A method to separate different components
of variance (related to the experimental
factors) from experimental data.

Tests statistics are formed from the variance
estimates.
o Do factors have an effect?

o The test statistics vary for different experimental
designs.



ANOVA

Different types of experiments will have a different
assumed underlying mathematical models.

The model will reflect characteristics of the
experiment.

o Fixed or random factors— Factor levels are set at particular
values.

o Nested factors
o Randomization

The previous information will determine how test
statistics (for effects) are formed , and how
estimates are computed.



Single Factor Experiments

A generalization to the single factor, two level
experiments where basic statistical inference
methods (hypothesis tests and confidence
Intervals) were applied.

a > 2 levels of the single factor are
considered.

Is there an effect of the factor?

o Not yet identifying differences between
treatments.



Example (pg. 66)

An engineer is interested in investigating the relationship between the
RF power setting and the etch rate for a tool. The objective of an
experiment like this is to model the relationship between etch rate
and RF power, and to specify the power setting that will give a
desired target etch rate.

The response variable is etch rate.

She is interested in a particular gas (C2F6) and gap (0.80 cm), and
wants to test four levels of RF power: 160W, 180W, 200W, and
220W. She decided to test five wafers at each level of RF power.
The experimenter chooses 4 levels of RF power 160W, 180W,
200W, and 220W

The experiment is replicated 5 times — runs made in random order



Example

Table 3-1 Etch Rate Data (in A/min) from the Plasma Etching Experiment

Power Observations
(W) | 2 3 4 S Totals Averages
1 60 575 542 530 539 570 2756 551.2
180 565 593 590 579 610 2937 587.4
200 600 651 610 637 629 3127 625.4
220 725 700 715 685 710 3535 707.0
750
Does changing the = 700|- —
power change the S ol
mean etch rate? £
, £ 6001 : |
Note that t-test doesn't . .
apply here since there = | | |
are more than 2 factor 760 W AW 220
ower (W)

levels.

{a) Comparative box plot

Figure 3-2  Box plots and scatter diagram of the etch rate data.



Generalization of the Example

Table 3-2 Typical Data for a Single-Factor Experiment

Treatment
(level) '- Observations Totals Averages
1 Y11 N2 T Yin Y. 1.
2 S 7 Y22 Lo Yan Y. ¥2.
a Yl Va2 SR Yan Ya. Ya.
. y.

In general, there will be a levels of the factor, or a treatments,
and n replicates of the experiment, run in random order...a
completely randomized design (CRD).

N = a*n total runs.

We consider fixed effects — the factors are fixed (conclusions
are applicable only to the treatments (factor levels) considered).
Obijective is to test hypotheses about the equality of the a
treatment means.



The Analysis of Variance -ANOVA

The basic single-factor ANOVA model is a linear model:

1=12...a

= UFT +E 9
yu HTT glj {121,2,...,n

(= anoverall mean, 7. =ith treatment effect,
&; = experimental error, NID(0, o)

The name “analysis of variance” stems from a partitioning of the
total variability in the response variable into components that are
consistent with a model for the experiment.

The model defines how the variability will be partitioned.
Fixed factor: a is specifically chosen by the experimenter
Random factor: Otherwise



Models for the Data

There are several ways to write a model for
the data:

y; = 4+7; +&; Is called the effects model
Let i = u+ 7, then

y;; = 4 +&; Is called the means model
Regression models can also be employed
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ANOVA

Total variability is measured by the total sum of

squares:

SST — ii(yij - y)z

i=1 j=1

The basic ANOVA patrtitioning Is:

Zalzn:()’ij — 7)2 = Zalzn:[(yl — V..)+(Yij — yi.)]2

i=1 j=1 i=1 j=1

— nza:(yl - 7)2 "‘Zalzn:()’ij — yi.)2

izl j=1

SS, =SS +SS,

Treatments
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ANOVA

SS, =SS SS,

A large value of SS+,..ments Feflects large differences in
treatment means.

A small value of SS
treatment means.

Formal statistical hypotheses are:

Treatments

reatments 1KElY Indicates no differences in

Hotpy =1, == p,
H, : At least one mean is different
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ANOVA

While sums of squares cannot be directly compared to
test the hypothesis of equal means, mean squares can
be compared.

A mean square is a sum of squares divided by its degrees
of freedom:

dfTotaI = dfTreatments T derror
an—-1=a-1+a(n-1)
MSTreatments _ SSTreatments | = SSE
a-1 a(n—1)

If the treatment means are equal, the treatment and error
mean squares will be (theoretically) equal.

If treatment means differ, the treatment mean square will
be larger than the error mean square.
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Analysis of Variance Table

Table 3-3 The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Sum of Degrees of Mean

Source of Variation Squares Freedom Square Fy

SSTreatments MS
Between treatments _ 2 5. =5 a—1 MSrwoens  Fo = TA:;;:;nems
Error (within _ _ B
trcatments) SSE - SST SSTreatments N a MS E
Total SST = 2 2 Oy — .7 N-1

i=1 j=1

The reference distribution for Fyis the F,; .4 distribution
Reject the null hypothesis (equal treatment means) if

|:O > F ,a=l,a(n-1)

(04
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ANOVA

An estimator of o2 is

i(yij o yi.)2

S? = Sample variance in the ith treatment = = .
n —

Pooled variance estimate from a treatments

(=187 ++(n-1)S? _ ;{;(y" W }

(n-)+---+(n-1) Za:(n—l)
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ANOVA

If the treatment means are the same then an estimator of 2/nis

: > (5 -7’

S : _
— =Sample variance of the treatments = =
n

a-1

Therefore

> (% -y)°
= is an estimator of 2.
a-1
> (V.-7)°
j=l — f)
a-1
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ANOVA

A more rigorous approach is to take expected values
of the mean squares.

SSE a n
E(MSE)zE(N_aj - {ZZ(VU Yi) }

i=1 j=1

a n

- Nl—a E_Zny _%Z iz}

>

j=1 Iljl
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ANOVA

Also

ny zf
E(MSTreatments) - 02 + ﬁ

No difference in treatment means = 7, =0 = E(MS;) = E(MS;, .. nents)-

Tostatistically test whether there is no difference in treatment means

we need a test statisticand a sampling distribution.
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ANOVA

It can be shown that SS /o? and SS. /o are independent random variables

Treatments
(Cochran's Theorem page 69 of the text) that have

a Chi -square distribution (sums of squared standard normal

random variables) with a-1and N-1degrees of freedom respectively.

What is thedistribution of theratio of two Chi -square random
variables divided by theirdegrees of freedom?
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Analysis of Variance Table

Table 3-3 The Analysis of Variance Table for the Single-Factor, Fixed Effects Model

Sum of Degrees of Mean

Source of Variation Squares Freedom Square Fy

SSTreatments MS
Between treatments _ 2 5. =5 a—1 MSrwoens  Fo = TA:;;:;nems
Error (within _ _ B
trcatments) SSE - SST SSTreatments N a MS E
Total SST = 2 2 Oy — .7 N-1

i=1 j=1

The reference distribution for Fyis the F,; .4 distribution
Reject the null hypothesis (equal treatment means) if

|:O > F ,a=l,a(n-1)

(04
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ANOVA for the Example

Table 3-4 ANOVA for the Plasma Etching Experiment

Sum of Degrees of Mean
Source of Variation Squares Freedom Square F, P-Value
RF Power 60,870.55 3 22.290.18 Fy = 66.80 <0.01
Error 5339.20 16 333.70
Total 72,209.75 19
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The Reference Distribution:

0T T T T 1T T T T T T T T T T T T T

Probahility density
L] [ ]
I o

I I

=
b
|

4 ﬁ\ g 12 aaﬁ 70
Fo01,3,18 Fo Fy = 66.80

Fy05,3.16

Figure 3-3 The reference distribution (F5,6) for the test statistic Fy in
Example 3-1.
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Predicted Values — Estimation of Model
Parameters

=Y.
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ANOVA calculations are usually done via computer

Text exhibits sample calculations from three
very popular software packages, Design-
Expert, JMP and Minitab

See activity for SAS coding

Text discusses some of the summary
statistics provided by these packages
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Model Adequacy Checking in the ANOVA

Checking assumptions
o Normality

o Constant variance

o Independence

What to do if some of these assumptions
are violated.
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Model Adequacy Checking in the ANOVA

= Verified by an
examination of residuals

€ =Y~ yij
=Y = Vi

= Residual plots are very
useful.

= Normal probability plot
of residuals.

Normal % probability
[ T 7% ] o -]
o o = [ ]
LR UL L LR L 0 A VLT EAR L O I

-25.4 -12.65 0.1 12.85
Residual

Figure 3-4 Normal probability plot of residuals for Example 3-1.

25.6
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Examination of Residuals

Standardized residuals

e..
d; =———should be approximately N (0, )
MS,

Standardized residuals > 3 may be considered outliers
based on standard normal probabilities.
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Other Residual Plots

Residuals

Figure 3-5

25.6

12.85

0.1

-12.65

-25.4

1 4 7 10 13 16 19

Run order or time

Plot of residuals versus run order or time.

Residuals

25.6

12.85

0.1

-12.85

-25.4

Figure 3-6

Plot of residuals versus fitted values.

Predicted

- O
o o
o o
B O
O
o
O O ]
O
D D
!
O
O - .
- O
| I | I |
551.20 500.15 629.10 668.05 707.00
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Formal Test for Equality of Variance

. 2_ 2 2
H o- O =0,-"=0.

Compute deviations of each observation from the
treatment median.

d; =|y; — ¥i| where ¥, = treatment i median.

Apply the ANOVA F-test for equality of the
deviation means.

Called the modified Levene test.
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Example — Problem 3-24

Four different designs for a digital computer circuit are being studied to

compare the amount of noise present.
Noise Observed from Different Circuit Designs

Replication
Design 1 2 3 4 5
D1 19 20 19 30 8
D2 80 61 73 56 80
D3 47 26 25 35 50
D4 95 46 83 78 97
Noise vs. Design
120
100 3
80 &
s
O 60 -
= $ .
40
n
20 A
X
0 T T
0 1 2 3 4 5
Design Number




Example — Problem 3-24

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance
D1 5 96 19.2 60.7
D2 5 350 70 121.5
D3 5 183 36.6 134.3
D4 5 399 79.8 420.7
ANOVA
Source of Variation SS df MS F P-value F crit(0.05)
Between Groups 12042 3 4014 21.77971 6.8E-06 3.2388715
Within Groups 2948.8 16 184.3
Total 14990.8 19
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Example — Problem 3-24

Check assumptions

Noise Observed from Different Circuit Designs

Replication
Design 1 2 3 4 5 Y
D1 19 20 19 30 8 19.2
D2 80 61 73 56 80 70
D3 47 26 25 35 50 36.6
D4 95 46 83 78 97 79.8
Residuals
Replication
Design 1 2 3 4 5
D1 -0.2 0.8 -0.2 10.8 -11.2
D2 10 -9 3 -14 10
D3 10.4 -10.6 -11.6 -1.6 13.4
D4 15.2 -33.8 3.2 -1.8 17.2
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Example — Problem 3-24

Standard Sorted
] Data (j - 0.5)/n|Norm Inverse] Data
1 -0.20 0.03 -1.96 -33.80
2 0.80 0.08 -1.44 -14.00
3 -0.20 0.13 -1.15 -11.60
4 10.80 0.18 -0.93 -11.20
5 -11.20 0.23 -0.76 -10.60
6 10.00 0.28 -0.60 -9.00
7 -9.00 0.33 -0.45 -1.80
8 3.00 0.38 -0.32 -1.60
9 -14.00 0.43 -0.19 -0.20
10 10.00 0.48 -0.06 -0.20
11 10.40 0.53 0.06 0.80
12 -10.60 0.58 0.19 3.00
13 -11.60 0.63 0.32 3.20
14 -1.60 0.68 0.45 10.00
15 13.40 0.73 0.60 10.00
16 15.20 0.78 0.76 10.40
17 -33.80 0.83 0.93 10.80
18 3.20 0.88 1.15 13.40
19 -1.80 0.93 1.44 15.20
20 17.20 0.98 1.96 17.20
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‘ Example — Problem 3-24

Residual

1
w

Normal Probability Plot

Standard Norm Inverse

34



Example — Problem 3-24

Residual vs. Ftted Values
20
X
s
X
10 * e
0 A :
- ( 20 40 60 80 100
.'§ -10 X ] —
[&)
o
-20
-30
|
-40
yi.
Standardized Residuals
Replication
Design 1 2 3 4 5
D1 -0.01 0.06 -0.01 0.80 -0.82
D2 0.74 -0.66 0.22 -1.03 0.74
D3 0.77 -0.78 -0.85 -0.12 0.99
D4 1.12 -2.49 0.24 -0.13 1.27




Example — Problem 3-24

Conduct a modified Levene test for equality
of variance.

Noise Observed from Different Circuit Designs
Replication
Design 1 2 3 4 5 Median
D1 19 20 19 30 8 19
D2 80 61 73 56 80 73
D3 47 26 25 35 50 35
D4 95 46 83 78 97 83

Deviations for the modified Levene test

Replication
Design 1 2 3 4 5
D1 0 1 0 11 11
D2 7 12 0 17 7
D3 12 9 10 0 15
D4 12 37 0 5 14
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Example — Problem 3-24

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance
D1 5 23 4.6 34.3
D2 5 43 8.6 40.3
D3 5 46 9.2 31.7
D4 5 68 13.6 202.3
ANOVA
Source of Variation SS df MS F P-value F crit(0.05)
Between Groups 203.6 3 67.86666667 0.879672 0.472383 3.2388715
Within Groups 1234.4 16 77.15
Total 1438 19
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What 1t Assumptions are Not Met?

Unequal variances and non-normality of
residuals often occur together.

o First address unequal variance (through data
transformations).

o Assess transformed data for normality of
residuals.

38



Example

Variance appears to be increasing as a
function of the treatment mean.

Residual vs. Ftted Values

40

30

20

10 ag

Residual
o
> |

-10 X L]

-20

-30

-40




Variance Stabilizing Transformation

Transform the raw data

0 y* =1(y).

Apply ANOVA to the transformed data.

o Conclusions apply to the transformed population.
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Data Transformations

Transform the data to equalize variance that changes as a function
of the mean.

Let Y be a random variable with E(Y) = x and standard deviation
oy .

Assuming the unequal variances change as a function of the mean
(e.g., the variance of theresiduals increases as Yy, increases) and the
standard deviation of Y = o, Is roughly proportloral toa powerof .

o
Oy X U

LetY =Y * bea transformation of Y (with data, individual observations
would be transformed y; = (y;)").

a+1-1

Then o. o = Transformthedata with 4 =1-«.

41



Data Transformations
Estimating o
In theith treatment o, oc 1" = G

=Ino, =Inf+alny

= Plotino, vs.aln g, using estimates of o, and z; .

g, =Sample standard deviation of theith treatment.

. =Sample average of theith treatment.



Example — Problem 3-24 (Original)

Noise Observed from Different Circuit Designs

Replication
Design 1 2 3 4 5 i
D1 19 20 19 30 8 19.2
D2 120 61 80 40 95 79.2
D3 60 26 15 35 50 37.2
D4 150 15 83 40 120 81.6
Noise vs. Design
160
140
120 ®
100
3
o 80 -
pd
60 s 9
40 _
[+
20 3
0 1 1
2 3

Design Number




Example — Problem 3-24 (Original)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance
D1 5 96 19.2 60.7
D2 5 396 79.2 945.7
D3 5 186 37.2 326.7
D4 5 408 81.6 3080.3
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 14448.6 3 4816.2 4.36507 0.019936 3.2388715
Within Groups 17653.6 16 1103.35

Total 32102.2 19
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Example — Problem 3-24 (Original)

Residuals
Replication
Yi 1 2 3 4 5
19.2 -0.2 0.8 -0.2 10.8 -11.2
70 40.8 -18.2 0.8 -39.2 15.8
36.6 22.8 -11.2 -22.2 -2.2 12.8
79.8 68.4 -66.6 1.4 -41.6 38.4
Standard Sorted

] Data (j - 0.5)/n|Norm Inverse| Data

1 -0.20 0.03 -1.96 -66.60

2 0.80 0.08 -1.44 -41.60

3 -0.20 0.13 -1.15 -39.20

4 10.80 0.18 -0.93 -22.20

5 -11.20 0.23 -0.76 -18.20

6 40.80 0.28 -0.60 -11.20

7 -18.20 0.33 -0.45 -11.20

8 0.80 0.38 -0.32 -2.20

9 -39.20 0.43 -0.19 -0.20

10 15.80 0.48 -0.06 -0.20

11 22.80 0.53 0.06 0.80

12 -11.20 0.58 0.19 0.80

13 -22.20 0.63 0.32 1.40

14 -2.20 0.68 0.45 10.80

15 12.80 0.73 0.60 12.80

16 68.40 0.78 0.76 15.80

17 -66.60 0.83 0.93 22.80

18 1.40 0.88 1.15 38.40

19 -41.60 0.93 1.44 40.80

20 38.40 0.98 1.96 68.40




‘ Example — Problem 3-24 (Original)

Normal Probability Plot

Standard Norm Inverse

Residual




Example — Problem 3-24 (Modified 1)

Standardized Residuals

Replication
Design 1 2 3 4 5
D1 -0.01 0.02 -0.01 0.33 -0.34
D2 1.23 -0.55 0.02 -1.18 0.48
D3 0.69 -0.34 -0.67 -0.07 0.39
D4 2.06 -2.01 0.04 -1.25 1.16
Residual vs. Fitted Values
80
.
60
40 * x
20 * .
T X
T 0 n : : .
(%]
& 20 = 40 60 80 1C
-20 [ |
-40
-60
]
-80
yi.
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Example — Problem 3-24 (Modified 1)

Modified Levine test

Noise Observed from Different Circuit Designs

|

Replication
Design 1 2 3 4 5 Median
D1 19 20 19 30 8 19
D2 120 61 80 40 95 80
D3 60 26 15 35 50 35
D4 150 15 83 40 120 83
Deviations for the modified Levene test
Replication
Design 1 2 3 4 5
D1 0 1 0 11 11
D2 40 19 0 40 15
D3 25 9 20 0 15
D4 67 68 0 43 37
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Example — Problem 3-24 (Modified 1)

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance
D1 5 23 4.6 34.3
D2 5 114 22.8 296.7
D3 5 69 13.8 94.7
D4 5 215 43 771.5
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 4040.15 3 1346.716667 4.499555 0.017974 3.2388715
Within Groups 4788.8 16 299.3
Total 8828.95 19
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Example — Problem 3-24 (Modified 2)

Transformed Noise Observed from Different Circuit Designs

Replication
Design 1 2 3 4 5 Vi
D1 0.41 0.41 0.41 0.36 0.54 0.43
D2 0.24 0.29 0.27 0.33 0.26 0.28
D3 0.29 0.38 0.44 0.34 0.31 0.35
D4 0.22 0.44 0.27 0.33 0.24 0.30
Transformed Noise vs. Design
0.60
0.50
o - »
3 0.40 .
3 »
E 0.30 - v
2 . -
£ 020 d
=
0.10
0.00 T T T T
0 1 2 3 4 5
Design Number




Example — Problem 3-24 (Modified 2)

Residuals
Replication
Yi. 1 2 3 4 5
0.43 -0.01 -0.02 -0.01 -0.07 0.11
0.28 -0.04 0.01 -0.01 0.05 -0.02
0.35 -0.06 0.02 0.09 -0.01 -0.04
0.30 -0.08 0.14 -0.03 0.03 -0.06
Residuals (Transformed) vs. Ftted Values
0.20
0.15 =
X
0.10
g
S 0.05
4]
o [
]
0.00
0.p0 % @
-0.05 * X
X L 4
.
-0.10
yi.
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Example — Problem 3-24 (Modified 2)

Standard Norm Inverse

Normal Probability Plot

(o)
)
(o]

for)
¢

(3
6-16
' *
6-65 -
*
o
T T 6-66 T T
oot ®
00 -2.00 -1.00 ¢ 900 1.00 2.00 3.00
*®
8:05
o & O
*

0-160
U 1o

Residual (transformed)

Standard Sorted
] Data (j - 0.5)/n|[Norm Inverse] Data
1 -0.01 0.03 -1.96 -0.08
2 -0.02 0.08 -1.44 -0.07
3 -0.01 0.13 -1.15 -0.06
4 -0.07 0.18 -0.93 -0.06
5 0.11 0.23 -0.76 -0.04
6 -0.04 0.28 -0.60 -0.04
7 0.01 0.33 -0.45 -0.03
8 -0.01 0.38 -0.32 -0.02
9 0.05 0.43 -0.19 -0.02
10 -0.02 0.48 -0.06 -0.01
11 -0.06 0.53 0.06 -0.01
12 0.02 0.58 0.19 -0.01
13 0.09 0.63 0.32 -0.01
14 -0.01 0.68 0.45 0.01
15 -0.04 0.73 0.60 0.02
16 -0.08 0.78 0.76 0.03
17 0.14 0.83 0.93 0.05
18 -0.03 0.88 1.15 0.09
19 0.03 0.93 1.44 0.11
20 -0.06 0.98 1.96 0.14
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Example — Problem 3-24 (Modified 2)

Deviations for the modified Levene test

Replication
Design 1 2 3 4 5
D1 0.00 0.01 0.00 0.05 0.12
D2 0.03 0.02 0.00 0.06 0.01
D3 0.05 0.03 0.10 0.00 0.03
D4 0.04 0.18 0.00 0.07 0.03
Anova: Single Factor
SUMMARY
Groups Count Sum Average Variance
D1 5 0.181734 0.03634681 0.00281
D2 5 0.129099 0.025819714 0.000542
D3 5 0.218024 0.043604775 0.001327
D4 5 0.314207 0.062841478 0.004716
ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.003653 3 0.001217681 0.518494 0.675524 3.2388715
Within Groups 0.037576 16 0.002348496

Total 0.041229 19




Comparison Among Treatment Means

If the null hypothesis that all treatments are
equal is rejected (from the ANOVA) more
analysis Is needed to determine which means

differ.

The methods used are called multiple
comparison methods.
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Comparison Among Treatment Means

Various hypotheses about the equality or

Inequality of treatment means can be expressed
as a contrast.

A contrast is a linear combination of parameters
expressed as

[ = Za:ciyi where Za:ci =0.
=1 =1

55



Examples

Suppose there are four treatments in a single factor
experiment.

4, i, —u, #0 =c,c,=0,c,=1c,=-1
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Comparison Among Treatment Means

Method1: UseYy, asanestimatorof s, and MS; as an estimator of o’

t-test

a 2 a
If C=> ¢y, thenVar(C)= G—Z c’.
n =

i=1

If the null hypothesisH, : > ¢,z = 0iis true, then

i=1
= will be~ N(0).

Since we estimate o* with MS_, the test statistic

A
_ =1

t, = i_s a Zwillbe~tN_a.
E
C:
n izzl“'

Reject H, if t, >t,,, .
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Comparison Among Treatment Means

Method 2: Result:Thesquare of at random variable with N —a degrees of freedom
has an F distribution with1numerator and N —a denominator degrees
F-test of freedom.

Test statistic

a 2
[Zcivi. j
2: i=1
S, &
n ;Ci

Fo =1,

Reject Hy if Fy >F .,
This test statisticcan be expressed as a ratio of mean squares
a 2
C.V.
s, Ss. (Zl Y j
F, =——== where MS. = = .
1 1 ZC'Z

N5
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Comparison Among Treatment Means

Orthogonal contrast (A special case)

Two contrastswith coefficients ¢, and d. are orthogonal contrasts
If

> cd; =0.

=1

Testsperfromed on orthogonal contrastsare independent.
For a treatments, a set of a-1orthogonal contrastswill
sumto SS

Treatments"

Orthogonal contrast is useful for preplanned comparisons. Example
see page 95.

Data snooping: Scheffe’s method
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Example — Problem 3-24

Noise Observed from Different Circuit Designs

Replication
Design 1 2 3 4 5
D1 19 20 19 30 8
D2 80 61 73 56 80
D3 47 26 25 35 50
D4 95 46 83 78 97

Noise vs. Design

120 -

100 -
v
80 £ -
. .
o 60 B
=z .
v "
40
=
20 X
0 : : : . .
0 1 2 3 4 5

Design Number




Example — Problem 3-24

Anova: Single Factor

SUMMARY
Groups Count Sum Average Variance
D1 5 96 19.2 60.7
D2 5 350 70 121.5
D3 5 183 36.6 134.3
D4 5 399 79.8 420.7
ANOVA
Source of Variation SS df MS F P-value F crit(0.05)
Between Groups 12042 3 4014 21.77971 6.8E-06 3.2388715
Within Groups 2948.8 16 184.3
Total 14990.8 19
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Example — Problem 3-24

Compare noise from
D1+D4 to D2+D3.

C.V.
2.5%. 195 70-366+79.8

- [Ms, & \/184.3 :
: +1+1+1
s e

to02516 = 2.12 = Do not reject.

=—.626
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Example — Problem 3-24

Compare noise from D1+D4 to D2+D3.

F, =t, =(~.626)" =0.392

2
MS, _SS, /1 ( C‘yi)
F=——c =2"c - i=1 +MS,

MS, MS, 1<,

~ (19.2-70-36.6+79.8)°
4/5

+184.3=0.392

Foosi16 = 4.49 = Do not reject.
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Example — Problem 3-24

Orthogonal contrasts

Contrast Coefficient

Design 1 2 3
D1 1 0 1
D2 0 1 -1
D3 -1 0 1
D4 0 -1 -1
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Example — Problem 3-24

(19.2 - 36.6)?
2/5

(70 —79.8)?
2/5

(19.2—70+36.6 — 79.8)?
415

SS., +SSg, +SS,, =12,042 = SS

SS,, = = 756.9

SS., = =240.1

SS.., = =11,045.0

Treatments
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Example — Problem 3-24

ANOVA

Source of Variation SS df MS F P-value F crit(0.05)
Treatments 12042 3 4014 21.77971 6.8E-06 3.2388715
Cl 756.9 1 756.9 4.106891 0.059713 4.4939984
C2 240.1 1 240.1 1.302767 0.270504 4.4939984
C3 11045 1 11045 59.92946 8.47E-07 4.4939984
Error 2948.8 16 184.3

Total 14990.8 19
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Schefté’s Method

A method for hypothesis testing or forming
confidence intervals for all possible contrasts
among factor level means.

o Confidence levels are applicable to infinitely many
contrasts.

o Applies to equal and unequal sample sizes.
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Schefté’s Method

Consider m contrastsamong factor level means
Contrastul<u<m:I’, =Cyuy +---+C, U,
Theestimatorof 7", isC, =c,y, +---+cC, Y.

The null hypothesisis that thecontrastsequal zero.

The estimator of thestandard deviation of contrastu is

u

i1 1

Thecritical valueis S, , =S ./(a—1)F

a,a-1,N-a

If |IC,| > S, reject the null hypothesis

a 2
S¢c = \/MSEZC‘“ where n. =# of replications in the ith treatment.
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Example — Problem 3-24

Orthogonal contrasts

Contrast Coefficient

Design 1 2 3

D1 1 0 1

D2 0 1 -1

D3 -1 0) 1

D4 0 -1 -1

Noise Observed from Different Circuit Designs
Replication

Design 1 2 3 4 5 Yi
D1 19 20 19 30 8 19.2
D2 80 61 73 56 80 70
D3 47 26 25 35 50 36.6
D4 95 46 83 78 97 79.8
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Example — Problem 3-24

C,=19.2-36.6=-17.4
C,=70-79.8=-9.8
C,=19.2-70+36.6—79.8=-94

S¢, =+/184.3*(1/5+1/5) =8.59

Sc, =+/184.3%(1/5+1/5) =8.59

S¢, =+/184.3*(1/5+1/5+1/5+1/5) =12.14

Soos1 = 8:59+/3*3.239 = 26.78

Soos2 =8.59+/3*3.239 = 26.78

Sqos5 =12.14+/3%3.239 = 37.84
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Comparison of Prior Methods

What method should be used?

o If specific contrasts (orthogonal) are of interest
use the t-test or equivalent F-test.

Compare confidence interval half-width.

o Difference in two means.
Scheffé’s method = 26.78.
t-confidence interval = 18.20
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Comparing Pairs of Treatment Means

Tukey’s test

If only the pairwise comparison of treatment
means is equal, specific test procedures have
been developed.

The null hypothesisis :
Ho gy = foralli= J.

Tukey's testis a procedure that controls confidence level
for all pairwise comparisons.
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Comparing Pairs of Treatment Means

The critical value for comparison is constructed from
thedistribution of thestudentized range statistic:

_ ymax B ymin
JMS, /n

G

Thedistribution of thisstatisticq(a,f) has two parameters.

a = Number of treatment means.
f = Degrees of freedom associated with MS_.
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Comparing Pairs of Treatment Means

Thecritical value is

T =q,(a, f) MSe

Reject the hypothesisthat twomeans are equal If the
estimated absolute value of their difference exceeds
the critical value.
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Problem 3-24

Compare all pairs of treatment means using
the Tukey test. Ask about the distribution
value required.

Noise Observed from Different Circuit Designs

Replication
Design 1 2 3 4 5 Yi
D1 19 20 19 30 8 19.2
D2 80 61 73 56 80 70
D3 47 26 25 35 50 36.6
D4 95 46 83 78 97 79.8




Example — Problem 3-24

Thecritical value Is computedas

Toos = U5 (416)/MS_ / n = 4.05+/184.3/5 = 24.59

Y, =Y, |=19.2- 70‘ =50.8
YV, —V.|=19.2-36.6|=17.4
Y, —VY,|1=19.2-79.8/=60.6
Y, —V¥,;|=|7/0-36.6|=33.4
Y, =V¥,|=|7/0-79.8/=9.8

Yo = Ya|= 36.6—79.8‘ =43.2




Other Procedures

Fisher Least Significant Difference (LSD)
method (read page 99)

o Comparison of all treatment mean pairs.

Dunnett’s procedure for comparison of
treatment means with a control. (read page
101)
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Determining Sample Size

Recall from before the two types of error.
o Type |
o Type |l
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Determining Sample Size

In single factor ANOVA an F-test is used to
evaluate the null hypothesis.

Ho sy =1, =-=pn,
H, : At least one mean is different
S =1-P(Reject H, |H, is false)
=1-P(F, > F, ..\ |H,is false)
What is the distribution of the teststatisticif H, is false?

If H, is false then F, = MS
F distribution.

IMS_ has a noncentral

Treatments

This distribution has three parameters : numerator and denominator
degrees of freedom, and a noncentrality parameter 6.
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Determining Sample Size

Operating characteristic curves are used

o a, B, ©, and the denominator degrees of freedom are
parameters of the curve.

o Different curves are constructed for different numerator
degrees of freedom (factor levels -1).

o Read page 105-108

nza: 7!
_ -l

ao’

(DZ
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Example 3.10 (Part I)

Consider the plasma etching experiment described
before. Suppose that the experimenter is interested
In rejecting the null hypothesis with a probability of
at least 0.9 if the four treatment means are

W= 575, Uy = 600, M3 = 650, Wg= 675

How many replications should be taken from each
population to obtain a test with the required power?
(use a = 0.01 and 0=25)
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‘ Determining Sample Size
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Example 3.10 (Part II)

Consider the plasma etching experiment described
before. Suppose that the experimenter is interested
In rejecting the null hypothesis with a probability of
at least 0.9 if any two treatment means differed by
as much as 75 A/min.

How many replications should be taken from each
population to obtain a test with the required power?
(use a = 0.01 and 0=25)
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Example 3.10 (Part I111)

Consider the plasma etching experiment described
before. Suppose that we want a 95 percent
confidence interval on the difference in mean etch
rate for any two power settings to be +30

How many replications should be taken from each
population to obtain the desired accuracy? (use a =
0.01 and 0=25)
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Fixed Factors V.S. Random Factors

Previous chapters have focused primarily on fixed
factors
o A specific set of factor levels is chosen for the experiment

o Statistical inference made about this factors are confined to the
specific levels studies

o For example, if three material types are investigated as in the
battery life experiment of Example 5.1, our conclusions are valid
only about those specific material types.

When factor levels are chosen at random from a larger

population of potential levels, the factor is random

o Sometimes, the factor levels are chosen at random from a larger
population of possible levels

o The experimenter wishes to draw conclusions about the entire
population of levels, not just those that were used in the
experimental design.
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How to deal with random factors?

A Single Random Factor Model
Two-Factor Factorial with Random Factors
Two-Factor Mixed Model

Two-Stage Nested Design

Split-Plot Design
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‘ A Single Random Factor Model

The linear statistical model is

I 1.2,...,a
r:,i_|u'+Tl'+Eil|' {_’ = I...E,.--,.ﬂ

(3.47)

where both the treatment effects 7; and €; are random vanables. We will assume that the treat-
ment effects 7, are NID (0, o>) random variables' and that the errors are NID (0, &), random
variables, and that the 7, and €; are independent. Because 7; is independent of €, the variance
of any observation is

Vily) = o+ o’

Variance components
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The basic ANOVA sum of squares identity
8857 = S8 Treatmens T S5 (3.48)

15 still valid. That is, we partition the total variability in the observations into a component
that measures the varniation between treatments (55, ..) @nd a component that measures
the variation within treatments (55;). Testing hypotheses about individual treatment effects is
not very meaningful because they were selected randomly, we are more interested in the pop-
ulation of treatments, so we test hypotheses about the variance component o2,

Hy:o =0
Hy:o; > 0 (3.49)
Ifr? = 0, all reatments are identical; but if o> = 0, variability exists between treatments.

As before, S5 /o is distributed as chi-square with N — a degrees of freedom and, under the

null hypothesis, .S'.S'T,.:mm;"cr: 15 distributed as chi-square with a — | degrees of freedom. Both
random variables are independent. Thus, under the null hypothesis o> = 0, the ratio

S5 Teaaments
a—1 M5
Fp = S, MS, (3.50)
N—a

15 distributed as F with a — | and N — a degrees of freedom. However, we need to examine
the expected mean squares to fully descnbe the test procedure.
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Estimating the variance components using the
ANOVA method:

MS s = O+ 1aT;

L M Teamens — Mg
"
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EXAMPLE 3.11 I

A textile company weaves a fabric on a large number of
looms. It would like the looms to be homogeneous so that it
obtains a fabric of uniform strength. The process engineer
suspects that, in addition to the usual variation in strength
within samples of fabric from the same loom, there may also

m TABLE 3.17

be significant variations in strength between looms. To
investigate this, she selects four looms at random and makes
four strength determinations on the fabric manufactured on
each loom. This experiment is run in random order, and the
data obtained are shown in Table 3.17. The ANOVA is con-

StrenEh Dvata for EmmEIe 1

Observations
Looms 1 2 3 4 ¥i
1 a8 o7 ag 06 390
2 a1 G0 o3 a2 366
3 96 05 a7 a5 383
4 a5 Ot ag a8 388

ducted and is shown in Table 3.18. From the ANOWA, we
conclude that the looms in the plant differ significantly.

The variance components are estimated by &> = 1.90 and
;2093 — 1.90

=f=lﬁ_%

ir

m TABLE 3.18
Amnalysis of Variance for the Strength Data

1527 = y

Therefore, the variance of any observation on strength is
estimated by

&, =o'+ a7 =190 + 696 = 8.86.
Most of this variability is attributable to differences
between looms.

Source of Variation Sum of Squares Degrees of Freedom Mean Square Fy P-Value
Looms 89.19 3 20.73 15.68 <(.001
Error 22.75 12 1.90

Total 111.94 15
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