
Chapter 3: The Analysis of 

Variance (a Single Factor)
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What If There Are More Than Two 

Factor Levels?
 The t-test does not directly apply

 There are lots of practical situations where there are 

either more than two levels of interest, or there are 

several factors of simultaneous interest

 The analysis of variance (ANOVA) is the appropriate 

analysis “engine” for these types of experiments

 The ANOVA was developed by Fisher in the early 

1920s, and initially applied to agricultural experiments

 Used extensively today for industrial experiments
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ANOVA

 A method to separate different components 

of variance (related to the experimental 

factors) from experimental data.

 Tests statistics are formed from the variance 

estimates.

 Do factors have an effect?

 The test statistics vary for different experimental 

designs.
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ANOVA

 Different types of experiments will have a different 

assumed underlying mathematical models.

 The model will reflect characteristics of the 

experiment.

 Fixed or random factors– Factor levels are set at particular 

values.

 Nested factors

 Randomization

 The previous information will determine how test 

statistics (for effects) are formed , and how 

estimates are computed.
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Single Factor Experiments

 A generalization to the single factor, two level 

experiments where basic statistical inference 

methods (hypothesis tests and confidence 

intervals) were applied.

 a > 2 levels of the single factor are 

considered.

 Is there an effect of the factor?

 Not yet identifying differences between 

treatments.
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Example (pg. 66)

 An engineer is interested in investigating the relationship between the 
RF power setting and the etch rate for a tool. The objective of an 
experiment like this is to model the relationship between etch rate 
and RF power, and to specify the power setting that will give a 
desired target etch rate.

 The response variable is etch rate.

 She is interested in a particular gas (C2F6) and gap (0.80 cm), and 
wants to test four levels of RF power: 160W, 180W, 200W, and 
220W. She decided to test five wafers at each level of RF power.

 The experimenter chooses 4 levels of RF power 160W, 180W, 
200W, and 220W

 The experiment is replicated 5 times – runs made in random order
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Example

 Does changing the 
power change the 
mean etch rate?

 Note that t-test doesn’t 
apply here since there 
are more than 2 factor 
levels. 
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Generalization of the Example

 In general, there will be a levels of the factor, or a treatments, 
and n replicates of the experiment, run in random order…a 
completely randomized design (CRD).

 N = a*n total runs.

 We consider fixed effects – the factors are fixed (conclusions 
are applicable only to the treatments (factor levels) considered).

 Objective is to test hypotheses about the equality of the a
treatment means.
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The Analysis of Variance -ANOVA

 The basic single-factor ANOVA model is a linear model: 

 The name “analysis of variance” stems from a partitioning of the 

total variability in the response variable into components that are 

consistent with a model for the experiment.

 The model defines how the variability will be partitioned. 

 Fixed factor: a is specifically chosen by the experimenter

 Random factor: Otherwise
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Models for the Data

There are several ways to write a model for 

the data:

 is called the effects model

Let ,  then 

 is called the means model

Regression models can also be employed
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ANOVA

 Total variability is measured by the total sum of 

squares:

 The basic ANOVA partitioning is:
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ANOVA

 A large value of SSTreatments reflects large differences in 
treatment means.

 A small value of SSTreatments likely indicates no differences in 
treatment means.

 Formal statistical hypotheses are:
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ANOVA

 While sums of squares cannot be directly compared to 
test the hypothesis of equal means, mean squares can 
be compared.

 A mean square is a sum of squares divided by its degrees 
of freedom:

 If the treatment means are equal, the treatment and error 
mean squares will be (theoretically) equal. 

 If treatment means differ, the treatment mean square will 
be larger than the error mean square.
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Analysis of Variance Table

 The reference distribution for F0 is the Fa-1, a(n-1) distribution

 Reject the null hypothesis (equal treatment means) if 

0 , 1, ( 1)a a nF F  
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ANOVA
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ANOVA
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ANOVA

 A more rigorous approach is to take expected values 

of the mean squares.
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ANOVA
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ANOVA
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Analysis of Variance Table

 The reference distribution for F0 is the Fa-1, a(n-1) distribution

 Reject the null hypothesis (equal treatment means) if 

0 , 1, ( 1)a a nF F  
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ANOVA for the Example
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The Reference Distribution:
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Predicted Values – Estimation of Model 

Parameters
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ANOVA calculations are usually done via computer

 Text exhibits sample calculations from three 

very popular software packages, Design-

Expert, JMP and Minitab

 See activity for SAS coding 

 Text discusses some of the summary 

statistics provided by these packages
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Model Adequacy Checking in the ANOVA

 Checking assumptions

 Normality

 Constant variance

 Independence

 What to do if some of these assumptions 

are violated.
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Model Adequacy Checking in the ANOVA

 Verified by an 

examination of residuals

 Residual plots are very 

useful.

 Normal probability plot

of residuals.
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Examination of Residuals

 Standardized residuals
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Other Residual Plots
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Formal Test for Equality of Variance

 Compute deviations of each observation from the 

treatment median.

 Apply the ANOVA F-test for equality of the 

deviation means.

 Called the modified Levene test.

median.   treatment~  where~ iyyyd iiijij 

2 2 2

11
...0: aH     

29



Example – Problem 3-24
Four different designs for a digital computer circuit are being studied to 

compare the amount of noise present.  
Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5

D1 19 20 19 30 8

D2 80 61 73 56 80

D3 47 26 25 35 50

D4 95 46 83 78 97

Noise vs. Design

0

20

40

60

80

100

120

0 1 2 3 4 5

Design Number

N
O

is
e

30



Example – Problem 3-24
Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

D1 5 96 19.2 60.7

D2 5 350 70 121.5

D3 5 183 36.6 134.3

D4 5 399 79.8 420.7

ANOVA

Source of Variation SS df MS F P-value F crit(0.05)

Between Groups 12042 3 4014 21.77971 6.8E-06 3.2388715

Within Groups 2948.8 16 184.3

Total 14990.8 19
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Example – Problem 3-24

 Check assumptions
Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5 yi.

D1 19 20 19 30 8 19.2

D2 80 61 73 56 80 70

D3 47 26 25 35 50 36.6

D4 95 46 83 78 97 79.8

Residuals

Replication

Design 1 2 3 4 5

D1 -0.2 0.8 -0.2 10.8 -11.2

D2 10 -9 3 -14 10

D3 10.4 -10.6 -11.6 -1.6 13.4

D4 15.2 -33.8 3.2 -1.8 17.2
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Example – Problem 3-24
Standard Sorted

j Data  (j - 0.5)/n Norm Inverse Data

1 -0.20 0.03 -1.96 -33.80

2 0.80 0.08 -1.44 -14.00

3 -0.20 0.13 -1.15 -11.60

4 10.80 0.18 -0.93 -11.20

5 -11.20 0.23 -0.76 -10.60

6 10.00 0.28 -0.60 -9.00

7 -9.00 0.33 -0.45 -1.80

8 3.00 0.38 -0.32 -1.60

9 -14.00 0.43 -0.19 -0.20

10 10.00 0.48 -0.06 -0.20

11 10.40 0.53 0.06 0.80

12 -10.60 0.58 0.19 3.00

13 -11.60 0.63 0.32 3.20

14 -1.60 0.68 0.45 10.00

15 13.40 0.73 0.60 10.00

16 15.20 0.78 0.76 10.40

17 -33.80 0.83 0.93 10.80

18 3.20 0.88 1.15 13.40

19 -1.80 0.93 1.44 15.20

20 17.20 0.98 1.96 17.20
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Normal Probability Plot
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Example – Problem 3-24

Standardized Residuals

Replication

Design 1 2 3 4 5

D1 -0.01 0.06 -0.01 0.80 -0.82

D2 0.74 -0.66 0.22 -1.03 0.74

D3 0.77 -0.78 -0.85 -0.12 0.99

D4 1.12 -2.49 0.24 -0.13 1.27

Residual vs. Fitted Values
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Example – Problem 3-24

 Conduct a modified Levene test for equality 

of variance.

Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5 Median

D1 19 20 19 30 8 19

D2 80 61 73 56 80 73

D3 47 26 25 35 50 35

D4 95 46 83 78 97 83

Deviations for the modified Levene test

Replication

Design 1 2 3 4 5

D1 0 1 0 11 11

D2 7 12 0 17 7

D3 12 9 10 0 15

D4 12 37 0 5 14
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Example – Problem 3-24

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

D1 5 23 4.6 34.3

D2 5 43 8.6 40.3

D3 5 46 9.2 31.7

D4 5 68 13.6 202.3

ANOVA

Source of Variation SS df MS F P-value F crit(0.05)

Between Groups 203.6 3 67.86666667 0.879672 0.472383 3.2388715

Within Groups 1234.4 16 77.15

Total 1438 19
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What if Assumptions are Not Met?

 Unequal variances and non-normality of 

residuals often occur together.

 First address unequal variance (through data 

transformations).

 Assess transformed data for normality of 

residuals.
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Example

 Variance appears to be increasing as a 

function of the treatment mean.
Residual vs. Fitted Values
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Variance Stabilizing Transformation

 Transform the raw data

 y* = f(y).

 Apply ANOVA to the transformed data.

 Conclusions apply to the transformed population.
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Data Transformations
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Data Transformations
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Example – Problem 3-24 (Original)
Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5 yi.

D1 19 20 19 30 8 19.2

D2 120 61 80 40 95 79.2

D3 60 26 15 35 50 37.2

D4 150 15 83 40 120 81.6

Noise vs. Design
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Example – Problem 3-24 (Original)

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

D1 5 96 19.2 60.7

D2 5 396 79.2 945.7

D3 5 186 37.2 326.7

D4 5 408 81.6 3080.3

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 14448.6 3 4816.2 4.36507 0.019936 3.2388715

Within Groups 17653.6 16 1103.35

Total 32102.2 19
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Example – Problem 3-24 (Original)
Residuals

Replication

yi. 1 2 3 4 5

19.2 -0.2 0.8 -0.2 10.8 -11.2

70 40.8 -18.2 0.8 -39.2 15.8

36.6 22.8 -11.2 -22.2 -2.2 12.8

79.8 68.4 -66.6 1.4 -41.6 38.4

Standard Sorted

j Data  (j - 0.5)/n Norm Inverse Data

1 -0.20 0.03 -1.96 -66.60

2 0.80 0.08 -1.44 -41.60

3 -0.20 0.13 -1.15 -39.20

4 10.80 0.18 -0.93 -22.20

5 -11.20 0.23 -0.76 -18.20

6 40.80 0.28 -0.60 -11.20

7 -18.20 0.33 -0.45 -11.20

8 0.80 0.38 -0.32 -2.20

9 -39.20 0.43 -0.19 -0.20

10 15.80 0.48 -0.06 -0.20

11 22.80 0.53 0.06 0.80

12 -11.20 0.58 0.19 0.80

13 -22.20 0.63 0.32 1.40

14 -2.20 0.68 0.45 10.80

15 12.80 0.73 0.60 12.80

16 68.40 0.78 0.76 15.80

17 -66.60 0.83 0.93 22.80

18 1.40 0.88 1.15 38.40

19 -41.60 0.93 1.44 40.80

20 38.40 0.98 1.96 68.40



Example – Problem 3-24 (Original)

Normal Probability Plot
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Example – Problem 3-24 (Modified 1)

Residual vs. Fitted Values
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Standardized Residuals

Replication

Design 1 2 3 4 5

D1 -0.01 0.02 -0.01 0.33 -0.34

D2 1.23 -0.55 0.02 -1.18 0.48

D3 0.69 -0.34 -0.67 -0.07 0.39

D4 2.06 -2.01 0.04 -1.25 1.16
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Example – Problem 3-24 (Modified 1)

 Modified Levine test

Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5 Median

D1 19 20 19 30 8 19

D2 120 61 80 40 95 80

D3 60 26 15 35 50 35

D4 150 15 83 40 120 83

Deviations for the modified Levene test

Replication

Design 1 2 3 4 5

D1 0 1 0 11 11

D2 40 19 0 40 15

D3 25 9 20 0 15

D4 67 68 0 43 37
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Example – Problem 3-24 (Modified 1)

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

D1 5 23 4.6 34.3

D2 5 114 22.8 296.7

D3 5 69 13.8 94.7

D4 5 215 43 771.5

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 4040.15 3 1346.716667 4.499555 0.017974 3.2388715

Within Groups 4788.8 16 299.3

Total 8828.95 19
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Example – Problem 3-24 (Modified 2)

Transformed Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5 yi.

D1 0.41 0.41 0.41 0.36 0.54 0.43

D2 0.24 0.29 0.27 0.33 0.26 0.28

D3 0.29 0.38 0.44 0.34 0.31 0.35

D4 0.22 0.44 0.27 0.33 0.24 0.30

Transformed Noise vs. Design
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Example – Problem 3-24 (Modified 2)
Residuals

Replication

yi. 1 2 3 4 5

0.43 -0.01 -0.02 -0.01 -0.07 0.11

0.28 -0.04 0.01 -0.01 0.05 -0.02

0.35 -0.06 0.02 0.09 -0.01 -0.04

0.30 -0.08 0.14 -0.03 0.03 -0.06

Residuals (Transformed)  vs. Fitted Values
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Example – Problem 3-24 (Modified 2)

Standard Sorted

j Data  (j - 0.5)/n Norm Inverse Data

1 -0.01 0.03 -1.96 -0.08

2 -0.02 0.08 -1.44 -0.07

3 -0.01 0.13 -1.15 -0.06

4 -0.07 0.18 -0.93 -0.06

5 0.11 0.23 -0.76 -0.04

6 -0.04 0.28 -0.60 -0.04

7 0.01 0.33 -0.45 -0.03

8 -0.01 0.38 -0.32 -0.02

9 0.05 0.43 -0.19 -0.02

10 -0.02 0.48 -0.06 -0.01

11 -0.06 0.53 0.06 -0.01

12 0.02 0.58 0.19 -0.01

13 0.09 0.63 0.32 -0.01

14 -0.01 0.68 0.45 0.01

15 -0.04 0.73 0.60 0.02

16 -0.08 0.78 0.76 0.03

17 0.14 0.83 0.93 0.05

18 -0.03 0.88 1.15 0.09

19 0.03 0.93 1.44 0.11

20 -0.06 0.98 1.96 0.14

Normal Probability Plot
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Example – Problem 3-24 (Modified 2)

Deviations for the modified Levene test

Replication

Design 1 2 3 4 5

D1 0.00 0.01 0.00 0.05 0.12

D2 0.03 0.02 0.00 0.06 0.01

D3 0.05 0.03 0.10 0.00 0.03

D4 0.04 0.18 0.00 0.07 0.03

Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

D1 5 0.181734 0.03634681 0.00281

D2 5 0.129099 0.025819714 0.000542

D3 5 0.218024 0.043604775 0.001327

D4 5 0.314207 0.062841478 0.004716

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 0.003653 3 0.001217681 0.518494 0.675524 3.2388715

Within Groups 0.037576 16 0.002348496

Total 0.041229 19

53



Comparison Among Treatment Means

 If the null hypothesis that all treatments are 

equal is rejected (from the ANOVA) more  

analysis is needed to determine which means 

differ.

 The methods used are called multiple 

comparison methods.
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Comparison Among Treatment Means

 Various hypotheses about the equality or 

inequality of treatment means can be expressed 

as a contrast.

 A contrast is a linear combination of parameters 

expressed as 
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Examples

 Suppose there are four treatments in a single factor 

experiment.
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Comparison Among Treatment Means
 Method1:

t-test
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Comparison Among Treatment Means
 Method 2:

F-test
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Comparison Among Treatment Means

 Orthogonal contrast (A special case)

 Orthogonal contrast is useful for preplanned comparisons.  Example 

see page 95.

 Data snooping: Scheffe’s method
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Example – Problem 3-24

Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5

D1 19 20 19 30 8

D2 80 61 73 56 80

D3 47 26 25 35 50

D4 95 46 83 78 97

Noise vs. Design
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Example – Problem 3-24
Anova: Single Factor

SUMMARY

Groups Count Sum Average Variance

D1 5 96 19.2 60.7

D2 5 350 70 121.5

D3 5 183 36.6 134.3

D4 5 399 79.8 420.7

ANOVA

Source of Variation SS df MS F P-value F crit(0.05)

Between Groups 12042 3 4014 21.77971 6.8E-06 3.2388715

Within Groups 2948.8 16 184.3

Total 14990.8 19
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Example – Problem 3-24

 Compare noise from 

D1+D4 to D2+D3.
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Example – Problem 3-24

 Compare noise from D1+D4 to D2+D3.

reject.not  Do 49.4
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Example – Problem 3-24

 Orthogonal contrasts 

Contrast Coefficient

Design 1 2 3

D1 1 0 1

D2 0 1 -1

D3 -1 0 1

D4 0 -1 -1

64



Example – Problem 3-24
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Example – Problem 3-24

ANOVA

Source of Variation SS df MS F P-value F crit(0.05)

Treatments 12042 3 4014 21.77971 6.8E-06 3.2388715

C1 756.9 1 756.9 4.106891 0.059713 4.4939984

C2 240.1 1 240.1 1.302767 0.270504 4.4939984

C3 11045 1 11045 59.92946 8.47E-07 4.4939984

Error 2948.8 16 184.3

Total 14990.8 19
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Scheffé’s Method

 A method for hypothesis testing or forming 

confidence intervals for all possible contrasts 

among factor level means.

 Confidence levels are applicable to infinitely many 

contrasts.

 Applies to equal and unequal sample sizes.
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Scheffé’s Method
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Example – Problem 3-24

 Orthogonal contrasts 

Contrast Coefficient

Design 1 2 3

D1 1 0 1

D2 0 1 -1

D3 -1 0 1

D4 0 -1 -1

Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5 yi.

D1 19 20 19 30 8 19.2

D2 80 61 73 56 80 70

D3 47 26 25 35 50 36.6

D4 95 46 83 78 97 79.8

69



Example – Problem 3-24
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Comparison of Prior Methods 

 What method should be used?

 If specific contrasts (orthogonal) are of interest 

use the t-test or equivalent F-test.

 Compare confidence interval half-width.

 Difference in two means.

 Scheffé’s method = 26.78.

 t-confidence interval = 18.20
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Comparing Pairs of Treatment Means

 Tukey’s test

If only the pairwise comparison of treatment  

means is equal, specific test procedures have 

been developed.
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Comparing Pairs of Treatment Means
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Comparing Pairs of Treatment Means

 value.critical the
exceeds difference their of  valueabsolute estimated

  theif equal are means  that twohypothesis Reject the

),(

is  valuecritical The

n

MS
faqT E

 

74



Problem 3-24

 Compare all pairs of treatment means using 

the Tukey test. Ask about the distribution 

value required.

Noise Observed from Different Circuit Designs

Replication

Design 1 2 3 4 5 yi.

D1 19 20 19 30 8 19.2

D2 80 61 73 56 80 70

D3 47 26 25 35 50 36.6

D4 95 46 83 78 97 79.8
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Example – Problem 3-24
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Other Procedures

 Fisher Least Significant Difference (LSD) 

method (read page 99)

 Comparison of all treatment mean pairs.

 Dunnett’s procedure for comparison of 

treatment means with a  control. (read page 

101)
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Determining Sample Size

 Recall from before the two types of error.

 Type I

 Type II
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Determining Sample Size

 In single factor ANOVA an F-test is used to 

evaluate the null hypothesis.
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Determining Sample Size

 Operating characteristic curves are used

 α, β, Ф, and the denominator degrees of freedom are 

parameters of the curve.

 Different curves are constructed for different numerator 

degrees of freedom (factor levels -1).

 Read page 105-108
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Example 3.10 (Part I)

 Consider  the plasma etching experiment described 

before. Suppose that the experimenter is interested 

in rejecting the null hypothesis with a probability of 

at least 0.9 if the four treatment means are

μ1= 575, μ2= 600, μ3= 650, μ4= 675

How many replications should be taken from each 

population to obtain a test with the required power? 

(use α = 0.01 and σ=25)
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Determining Sample Size
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Example 3.10 (Part II)

 Consider  the plasma etching experiment described 

before. Suppose that the experimenter is interested 

in rejecting the null hypothesis with a probability of 

at least 0.9 if any two treatment means differed by 

as much as 75 A/min. 

How many replications should be taken from each 

population to obtain a test with the required power? 

(use α = 0.01 and σ=25)
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Example 3.10 (Part III)

 Consider  the plasma etching experiment described 

before. Suppose that we want a 95 percent 

confidence interval on the difference in mean etch 

rate for any two power settings to be ±30

How many replications should be taken from each 

population to obtain the desired accuracy? (use α =
0.01 and σ=25)
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Fixed Factors V.S. Random Factors

 Previous chapters have focused primarily on fixed
factors
 A specific set of factor levels is chosen for the experiment

 Statistical inference made about this factors are confined to the 
specific levels studies

 For example, if three material types are investigated as in the 
battery life experiment of Example 5.1, our conclusions are valid 
only about those specific material types.

 When factor levels are chosen at random from a larger 
population of potential levels, the factor is random
 Sometimes, the factor levels are chosen at random from a larger 

population of possible levels

 The experimenter wishes to draw conclusions about the entire 
population of levels, not just those that were used in the 
experimental design.
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How to deal with random factors? 

 A Single Random Factor Model  

 Two-Factor Factorial with Random Factors

 Two-Factor Mixed Model

 Two-Stage Nested Design

 Split-Plot Design
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A Single Random Factor Model  
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Variance components
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Estimating the variance components using the 

ANOVA method:
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