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Student Activity 6: Randomized Block Design, Latin Square, Repeated Latin Square, and Graeco Latin Square 

Consider the “one-way treatment structure in a completely randomized design structure” experiment. 
 
We have “a” treatments, each replicated n times (we consider the balanced case for simplicity).  The 
appropriate means model is 
 

  
Yij  i  ij            i  1,2,..., a

                             j 1,2,...,n
       where  ij ~ iidN 0,

2  

 
The error terms  ij  denote the plot to plot variation in the response that cannot be attributed to the 

treatment effect.   
 

The variance 
2
 is a measure of this variation.  If the plots are more alike (homogeneous) then 

2
 

will be low.  If the plots are very different from one another 
2
 will be large. 

 

A small 
2
 enables an experimenter to attribute even small variation in the treatment sample means 

Y 1,..,Y a  to differences between treatment (population) means ij .  In other words, a small 
2
 results 

in a more powerful F -test.  The reverse is true if 
2
 is large. 

 

Thus, one of the main tasks of an experimenter is to reduce 
2
 by using homogeneous experimental 

units. 
 
However, one should make sure that such homogeneity does not compromise to applicability of the 
results. 
 
 [e.g.:    Using white males ages 21-25 in a test of a hair growing formulation 

will make the results inapplicable to older males and individuals of  
other races or females.  
 

Another way to reduce 
2
 is by grouping experimented units that are more alike. 

 
 e.g.:   1)    We have two drugs to be tested.  Use identical twins, say  

5 pairs.  Randomly pick one twin from each pair and give  
drug one.  The other twin gets drug two.  We rely on the  
fact that within pair of twin variation is less than between 
pair of twin variation. 

 
 e.g.:  2) We need to test two types of shoe soles.  Pick 20 people 
   and randomly assign one type of sole to one foot of each  
   person and the other type to the other foot.  Here again, 
   between foot variation within a person is less than between 
   person variation. 
 
 e.g.:  3) In an agricultural experiment to compare the yield of 4 varieties  

of soybeans, divide experimental land into four blocks, each 
block containing 5 plots (i.e. experimental units).  In each block, 
randomly assign each variety to a plot. 
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All the above are examples of  “BLOCKING”.  In example 1), the block is a pair of twins, in example 
2), the block is a person, and in example 3), the block is a piece of land consisting of 5 adjoining 
plots. 
 
In all cases, plot to plot variation within a block is less than block to block variation. 
 

THE MEANS MODEL FOR A ONE-WAY (FIXED EFFECT) TREATMENT STRUCTURE IN A 
RANDOMIZED BLOCK DESIGN 

 
Yij  i   j  ij          i  1,2,..., a

                                   j 1,2,...,b
 

 

  where   
i ~ iidN o, b

2 

 ij ~ iidN 0, 2 
 

 
  and   j , ij  are independent. 

 

  i  denote the population mean for the   i
th

 treatment 

 
    One can consider the above model as a two-way model where the row effect is fixed but the          
    column effect is random (so it is a mixed model).  In fact, the appropriate sum of squares can be  
    obtained by treating it as a two-way model without interaction. 
 

    The plot to plot variation within a fixed block is 
2
.  Thus, the error variance of a plot selected       

    randomly from a pre-specified block (after accounting for the block effect) is 
2
. 

 

Thus  Var Y12 Y22  Var 12  22  2
2
.  However, the variance of the response of a plot randomly 

picked from the totality of ab  plots is not 
2
 but is 

  


2


b 1

b
b

2
 

2
 b

2
 if b is large .  Note that b

2
 is 

the block variation (scaled to reflect the plot size). 
 

If b

2
 is large, then blocking will enable to come up with a more “sensitive” experiment. 

 
THE CLASSICAL MODEL 

 

  

Yij   i   j   ij i  1,2,...,a

                                             j 1,2,...,b

 ij , j  defined as before.

 

 

Observe that we have no interaction term.  In blocked experiments, it is assumed that there  
is not block by treatment interaction. 

 The constraints assumed are  

  

i  0
i1

a

  and  j  0
j1

b

 . The second restriction is needed only if 

the blocking effect is considered fixed. 
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AN EXAMPLE OF AN ANALYSIS OF DATA FROM A  
RANDOMIZED COMPLETE BLOCK DESIGN 

 
Example 1: Three different washing solutions are being compared to study their effectiveness in 
retarding bacteria growth in 5-gallon milk containers. The analysis is done in a laboratory, and only 
three trials can be run on any day. Because days could represent a potential source of variability, the 
experimenter decides to use a randomized block design. Observations are taken for four days, and 
the data are shown here. Analyze the data from this experiment and draw conclusions. 
  
In this example, the blocking factor is the day. The treatment is “solution”. We have three types of 
solutions and four levels for “day.”  

 
 
options ls=72 nodate; 

data wash; 

input solution day bacteria; 

cards; 

1 1 13 

1 2 22 

1 3 18 

1 4 39 

2 1 16 

2 2 24 

2 3 17 

2 4 44 

3 1 5  

3 2 4 

3 3 1 

3 4 22 

; 

proc print; 

title1 ' MATH 338 : Experimental Design'; 

title2 'Example on Randomized Complete Block Design'; 

title3 'List of Data'; 

proc glm; 

title3 'analysis of variance results'; 

class solution day; 

model bacteria = day solution / solution; 

means solution / tukey; 

proc glm; 

title3 'analysis of variance results with lsmeans'; 

class solution day; 

model bacteria = day solution / solution; 

lsmeans solution / tdiff; 

run; 
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THE SAS OUTPUT IS GIVEN BELOW                     
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OTHER BLOCK DESIGNS 
 
There are many types of block designs, with RCB being one of them. Some of the other block 
designs are Latin Square Designs, Greaco-Latin Square Designs, and Split-Plot Designs. 
 
 
LATIN SQUARE DESIGN 
 
In a randomized complete block design, the blocking was done to reduce variation that can be 
attributed to some random (and in some cases fixed) factor.  For example, in an agricultural 
experiment, blocking may be done to remove the effect due to a fertility gradient; in a chemistry 
experiment blocking may be done to remove the effect of the chemists’ skills.  In some situations, it is 
possible that one wishes to remove the effect of two factors.  Then blocking has to be done in two 
“directions”, each “direction” corresponding to the “gradient’ of a given factor. 
 
 e.g: An agricultural scientist wishes to study the effects of 4 different kinds of fertilizer 
  on a certain variety of wheat.  The experimental field in which the wheat 
  is to be grown has a moisture gradient in one direction and a sunlight  
  gradient perpendicular to it. 
 
  Hence we need to block in both directions. 
 
     Column Blocks 
 

  Row Blocks       

A B C D

B C D A

C D A B

D A B C

          Sun Light Gradient 

 
             Moisture Gradient 
 

 
  One may block as above (with 4 row blocks to take care of the sunlight  
  gradient and 4 column blocks to take care of the moisture gradient). 
 
  If you now apply the four fertilizers (i.e. treatments A,B,C,D) in such a 
  way that each treatment occurs once (and only once) in each row and 
  in each column, then we have what is known as a Latin Square Design. 
 
Usually, the row block effects and the column block effects are random effects and it is assumed that 
there is no row * column, row * treatment, column * treatment and row * column * treatment 
interaction.  In fact, it is the contrasts that estimate the above interactions that are used to estimate 

the error variance
2
. 

 
Sometimes, the row effect or the column effects are those due to a specific treatment (or both are).  
Thes, the rows, columns (or both) are fixed effects. 
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  e.g.: In the agriculture example given above, suppose the 
   experimental field is homogeneous (and hence no blocking 
   is necessary), but the agriculturalist is interested in two other 
   factors, namely wheat variety and time of application of fertilizer. 
   Suppose each of these two factors also have 4 levels each. 
 
   Then, the agriculturalist could have conducted a 3-way  

experiment. With 2 replications for each of the 4 * 4 * 4  
treatment combinations, be would need 128 experimental  
units (plots). 

 
   Suppose he knows that no interaction exists, so he need not  

Replicate because interaction contrast can be used to estimate error.   
Even then he needs 64 plots. 

 
   Now, if the no interaction hypothesis is true (i.e. no variety *  

fertilizer, variety * time, time * fertilizer, and variety * time *  
fertilizer interactions), then he could use the design in  on this page 
with the varieties  randomly assigned to the rows and times  
of fertilizing randomly assigned to the columns.  This way, he  
needs only 16 plots! 

 
   Usually, however, such an assumption of no interaction is not  

reasonable and thus the agriculturalist may end up having to  
use 128 plots. 

 
THE GENERAL MEANS MODEL FOR A LATIN SQUARE DESIGN 

 
  Yijk  i  j  k  ijk  

 
 

  

  

i 1,2,...,

j 1,2,...,                   # of treatments =#  of rows =# of columns 

k  1,2,...,

 

 

  

  

Here i denotes the treatment

Here j denotes the row

Here k denotes the column

















 

 

  

  

*

where  j ~ iidN 0,k

2 

k ~ iidN 0, c

2 

            
ijk

~ iidN 0, 2 
with     j ,k , ijk independent



























   If row and column effects are random 
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or 

           Yijk  ijk   ijk      ,       ijk ~ iidN 0,
2 

          if row &  column effects are fixed.

















 

 
THE GENERAL CLASSICAL MODEL FOR LATIN SQUARE DESIGN 

 

  

1

, , 1,2,...,    ,   0

ijk i j k ijk

i

i

Y

i j k


    

 


    

 
 

   

( -denoting the treatment effect and -denoting the overall mean)i   

 

and if  j ,k  are considered random  effects. I this case * above holds. 

 

If  j ,k  are fixed, then  j  0
j1



 ,    k  0
k1



  and ijk ~ iidN 0,
2 . 

 
Note that the above model is completely additive.  That is, it has no interaction terms. 
 

ANALYSIS OF A LATIN SQUARE DESIGN 
 

  

  

SSTotal  Yijk

2
      NY 

2

k1




j1




i1



  

 

  where N  
2
. 

 

  
  
SSTreatment  Y i

2
     NY 

2

i1



  

 

  

  

SSRows  Y  j

2
         NY 

2

j1



  

 

  
  
SSColumns  Y k

2
      NY 

2

k1



  

 
It can be shown that   SSTreatment,SSRow,SSColumns are independent, and are also independent of   SSError  

where 
 
    SSError  SSTotal  SSTreatment  SSRows  SSColumns 

 
Further, 
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Fo 

SS
Treatment

/  1 
SSError /   2   1 

~ F  1,   2   1   

 
if 
  Ho   1  2  ..    0   (otherwise, Fo  has a non-central F  distribution). 

 
THE ANOVA TABLE 

 
   Source                       d.f.                  SS     MS    F  

 

Treatments    1    SSTreatment          MSTreatment       

  
Fo 

MSTreatment

MSError

 

 
Rows     1    SSRows            MSRows  

 
Columns    1    SSColumns          MSColumns 

 
Error         2   1    SSError            MSError  

 

Total    
2
1    SSTotal 

 
 
Then analysis using SAS can be done as follows: 
 

    proc glm data=yourdata; 

    class row col treatment; 

model y = row col treatment; 

means treatment/lsd tukey; 

    run; 

 
Example 2: Consider an experiment to investigate the effect of 4 diets on milk production. There are 
4 cows. Each lactation period the cows receive a different diet. Assume there is a washout period so 
previous diet does not affect future results.  
 
options nocenter ls=75; 
data milk; 
input cow period trt resp @@; 
cards; 
1 1 1 38 1 2 2 32 1 3 3 35 1 4 4 33 
2 1 2 39 2 2 3 37 2 3 4 36 2 4 1 30 
3 1 3 45 3 2 4 38 3 3 1 37 3 4 2 35 
4 1 4 41 4 2 1 30 4 3 2 32 4 4 3 33 
; 
proc glm; 
class cow trt period; 
model resp=trt period cow; 
means trt/lsd tukey; 
means period cow; 
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output out=new r=res p=pred; 
symbol1 v=circle; 
proc gplot; 
plot res*pred; 
proc univariate noprint normal; 
histogram res/normal (L=1 mu=0 sigma=est) kernel (L=2); 
qqplot res/normal (L=1 MU=0 sigma=est); 
run; 
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REPEATED LATIN SQUARES 
 

One disadvantage of a Latin Square Design is that smaller squares yield low d.f. for error (e.g. A 3 x 3 
design has only 2 d.f. for error; a 5 x 5 design has only 12 d.f. for error).  To overcome this problem, 
one may replicate the Latin Square n  times n 1 . 
 
Case 1 Latin Squares replicated with same blocks. (Use the same col & row in each replicate) 
 
  The classical model is: 
 

   
Replication

ijk i j k ijkY      



     

 

 

     i, j,k as before, 1,2,...,n, where   denote the effect of the   
th

 square 

   (which is also a block effect). 
 

   
  
SSTreatment  n  Y i 

2
        N  Y 

2

i1



   where N  n
2
. 
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SSRows  n  Y  j 

2
   N  

j1



 Y 
2

 

 

   
  
SSColumns  n  Y k

2
   N  Y 

2

k1



  

 

   

  

SSReplication 
2
 Y 

2
   N  Y 

2

1

n



 SSSquares 
 

 

   

  

SSTotal  Yijk

2
   N  Y 

2
k


j


i

  

 
   

  
SSError  SSTotal  SSRows  SSColumns  SSRep. 

 
 
      ANOVA 
 
Source   d.f.   SS    MS    F  

 

Treatments    1           SSTreatment             MSTreatment        

  
Fo 

MSTrt

MSError

 

 
Rows     1           SSRows              MSRows  

 
Columns    1            SSColumns             MSColumns 

 
Replicates   n 1         

  
SSReplicates           

  
MSReplicates 

 

Error    1  n  1  3           SSError               MSError  

 

Total    n
2
1          SSTotal 
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Example 3 (Case 1): Same rows and same columns in additional squares 

                  

  1 2 3 

 
 

response 
 

  

1 A B C 
 

7 8 9   

2 B C A 

 

4 5 6   

3 C A B 

 

6 3 4   

  
    

   
  

  
    

   
  

  1 2 3 

 
   

  

1 C B A 

 

8 4 7   

2 B A C 

 

6 3 6   

3 A C B 
 

5 8 7   

  
    

   
  

  
    

   
  

  1 2 3 

 
   

  

1 B A C 

 

9 6 8   

2 A C B 

 

5 7 6   

3 C B A 

 

9 3 7   

                  

 
data case1; 
input rep row col trt resp; 
datalines; 
1 1 1 1 7 
1 1 2 2 8 
1 1 3 3 9 
1 2 1 2 4 
1 2 2 3 5 
1 2 3 1 6 
1 3 1 3 6 
1 3 2 1 3 
1 3 3 2 4 
 
2 1 1 3 8 
2 1 2 2 4 
2 1 3 1 7 
2 2 1 2 6 
2 2 2 1 3 
2 2 3 3 6 
2 3 1 1 5 
2 3 3 2 7 
 
3 1 1 2 9 
3 1 2 1 6 
3 1 3 3 8 
3 2 1 1 5 
3 2 2 3 7 
3 2 3 2 6 
3 3 1 3 9 
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3 3 2 2 3 
3 3 3 1 7 
; 
proc glm data=case1; 
class rep row col trt; 
model resp=rep row col trt; 
run; 
quit; 

 

 
 
Case 2 Replicated by introducing additional versions of one blocking factor but using the  

same blocks for the other blocking factor. (use different rows but same columns in each 
replicate) 

 

w. .o.g. assume that columns blocks are repeated but row blocks have additional versions. 
 

The classical model is: 
 

   
Yijk     i   j  k    jk

 1,2,..., n
 

 

   

  

SSTotal  Yijk

2
   n  Y 

2
k


j


i

  
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   where N  n
2
 

 

   
  
SSTreatment  n  Y i 

2
   N  Y 

2

i1



  

 

   
  
SSRows  Y j

2

1

n


i1



    
2
Y 

2

1

n

  

 

   
  
SSColumns  nY k

2
   N  Y 

2

k1

n

  

 

   
  
SSReplicates 

2
Y 

2
   N  Y 

2

1

n

  

 
   

  
SSError  SSTotal  SSTrt  SSRows  SSCol  SSRep 

 
 
      ANOVA 
Source   d.f.   SS    MS    F  

 

Treatments    1           SSTreatment             MSTreatment        

  
Fo 

MSTrt

MSError

 

 
Rows    n  1           SSRows              MSRows  

 
Columns    1            SSColumns             MSColumns 

 
Replicates   n 1         

  
SSReplicates           

  
MSReplicates 

 

Error          1 1n              SSError               MSError  

 

Total    n
2
1          SSTotal  
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Example (Case 2): New (different) rows and same columns 

                  

  1 2 3 

 
 

response 
 

  

1 A B C 
 

7 8 9   

2 B C A 

 

4 5 6   

3 C A B 

 

6 3 4   

  
    

   
  

  
    

   
  

  1 2 3 

 
   

  

4 C B A 

 

8 4 7   

5 B A C 

 

6 3 6   

6 A C B 

 

5 8 7   

  
    

   
  

  
    

   
  

  1 2 3 

 
   

  

7 B A C 

 

9 6 8   

8 A C B 

 

5 7 6   

9 C B A 

 

9 3 7   

                  

  
 
Case 3 Latin Squares replicated by introducing additional versions of both blocking variables. 
(use different row & col in each replicate) 
 

The model is: 
 
    Yijk    i  j  k   ijk  

 
      SSTotal computed as before 

  
      SSTreatment computed as before 

 
      SSRows  computed as before 

 

    
  
SSColumns    Y k

2
 

2
Y 

2

1

n


1

n


k1



  

 

    
  
SSReplicates 

2
Y 

2
   N  Y 

2
 where N  n

2

1

n

  

 
      SSError  obtained by subtraction. 

 
The ANOVA table as in Case 2, except   SSColumn computed differently and has n  1  d.f. and   SSError  

has    1 1 1n       d.f. 

 



MATH 4220  Dr. Zeng 

19 

 

SAS can be used to analyze repeated Latin Squares as follows: 
 
Example 4 (Case 3): different rows and new columns 
 

                  

  1 2 3 

 
 

response 
 

  

1 A B C 
 

7 8 9   

2 B C A 

 

4 5 6   

3 C A B 

 

6 3 4   

  
    

   
  

  
    

   
  

  4 5 6 

 
   

  

4 C B A 

 

8 4 7   

5 B A C 

 

6 3 6   

6 A C B 

 

5 8 7   

  
    

   
  

  
    

   
  

  7 8 9 

 
   

  

7 B A C 

 

9 6 8   

8 A C B 

 

5 7 6   

9 C B A 

 

9 3 7   

                  

 
 
 Case 1 (rows and columns crossed w/reps) 
  

    proc glm data=yourdata; 

    class rep row col treatment; 

    model y = rep row col treatment; 

    run; 

 
 
 Case 2 (row nested, columns crossed w/reps) 
  

             proc glm data=yourdata; 

     class rep row col treatment; 

     model y = rep row(rep) col treatment; 

     run; 

 
 
 Case 3 (rows and columns nested w/reps) 
 

             proc glm data=yourdata; 

     class rep row col treatment; 

     model y = rep row(rep) col(rep) treatment; 

     run; 

Note: ROW (REP) gives SS  due to rows within replication.  (Similarly for COLUMN (REP)). 



MATH 4220  Dr. Zeng 

20 

 

GRAECO-LATIN SQUARES 
 

  Def.
n
 Let a x  Latin square consists of Latin letters and another x  Latin square consist of Greek 

letters.  Suppose they have the property that when superimposed, each Latin letter coincides 
exactly once with each Greek letter.  Then the two squares are said to be orthogonal. 

 
 

A collection of n    pxp  Latin squares are said to be a mutually orthogonal set of Latin squares 

if each letter in one square coincides with each combination of the letters in the other squares 
exactly once. 
 

  Def.
n
 A pair x  Latin, Greek, Greek squares that are orthogonal form a Graeco-Latin square. 

 
Using a Graeco-Latin square, one may block in a 3rd direction or analyze a 2nd treatment. 
 
 
   An example of a Graeco-Latin Square 
 

    

A B C D E

B C D E A

C D E A B

D E A B C

E A B C D

 

 
 
Note: When more than two orthogonal Latin squares are superimposed, we obtain a Hyper-Graeco-

Latin square. 
 
 
Analysis of Graeco-:Latin Squares 
 
Model is: 

  

Yijk     i w j  k     ijk

                      
     

              
Latin

            
    TRT

Ź

Greek

                          

Letter

 ŹŹ

Row

             

Column

 

  

  

SSTotal  Yijk

2
   N  Y 

2
k


j


i

   where N   . 

  

    

                                                              

 d.f.)
SS

Trt
 SS

Latin
 Y i

2    N  Y 
2    ( 1)

i1




 

  

  

SSGreek  Y  j

2
   Y 

2
                      1 

j1



  
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SSRows  Y k

2
   Y 

2
                      1 

k1



  

 

  
  
SSColumns  Y 

2
   Y 

2
                    1 

1



  

 

    SSError  obtained by subtraction          3   1   
 
SAS can be utilized as follows: 
 

    proc glm data=yourdata; 

    class greek row col tx; 

    model y = row col greek tx; 

    run; 

 

Example 5: Graeco-Latin Square 
An experiment is conducted to compare four gasoline additives by testing them on four cards with 
four drivers over four days. Only four runs can be conducted in each day. The response is the amount 
of automobile emission. 
Treatment factor: gasoline additive, denoted by A, B, C, and D 
Block factor 1: driver, denoted by 1,2,3,4 
Block factor 2: day, denoted by 1,2,3,4 
Block factor 3: car, denoted by α, β, γ, δ 
 

 
Graeco-Latin Square Design Matrix: 

 



MATH 4220  Dr. Zeng 

22 

 

SAS codes: 

 
data additives; 
input row col trt greek resp @@; 
datalines; 
1 1 1 1 32 1 2 2 2 25 
1 3 3 3 31 1 4 4 4 27 
2 1 2 4 24 2 2 1 3 36 
2 3 4 2 20 2 4 3 1 25 
3 1 3 2 28 3 2 4 1 30 
3 3 1 4 23 3 4 2 3 31 
4 1 4 3 34 4 2 3 4 35 
4 3 2 1 29 4 4 1 2 33 
; 
proc glm data=additives; 
class row col trt greek; 
model resp=row col trt greek; 
run; 
 

Multiple comparisons can be carried out using similar methods. 

 

SAS outputs: 

 
 

 

Practice:  
 

1. Run the repeated Latin square design case 2 and 3. Interpret your result. 
2. Interpret the result for Example 1-4 
3. Draw conclusion for Example 5. Include the analysis of multiple comparisons.  
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Assignments: 
 

1. Lew (2007) presents the data from an experiment to determine whether cultured cells respond to two 
drugs. The experiment was conducted using a stable cell line plated onto Petri dishes, with each 
experimental run involving assays of responses in three Petri dishes: one treated with drug 1, one 
treated with drug 2, and one untreated serving as a control. The data are shown in the table below: 

 

  Control Drug 1 Drug 2 

Experiment 1 1147 1169 1009 

Experiment 2 1273 1323 1260 

Experiment 3 1216 1276 1143 

Experiment 4 1046 1240 1099 

Experiment 5 1108 1432 1385 

Experiment 6 1265 1562 1164 

 
(a) Analyze the data as if it came from a completely randomized design (CRD). Write down the classical 

effect model for CRD and the five steps for hypothesis testing. Is there a significant difference between 
the treatment groups? 

(b) Analyze the data as complete randomized block design (CRBD). What is the treatment? What is the 
blocking factor? Write down the classical effect model for CRD and the five steps for hypothesis 
testing. Is there a significant difference between the treatment groups? 

(c) Is there any difference in the results you obtain in (a) and (b)? If so, explain what may be the cause of 
the difference in the results and which method would you recommend? 

 
2. Le Riche and Csima (1964) evaluated four hypnotic drugs and a placebo to determine their effect on 

quality of sleep in elderly patients. The treatment levels were labeled (A=Placebo, E=Ethchlorvynol, 
C=Glutethimide, D=Chloral hydrate and E=Secobarbitol sodium). Elderly patients were given one of the 
capsules for five nights in succession and their quality of sleep was rated by a trained nurse on a four-
point scale (0=poor to 3=excellent) each night. An average score was calculated for each patient over 
the five nights in a week. Each patient received all five treatments in successive weeks. The design and 
the response (mean quality of sleep rating ) are shown in the table below: 
 

          Week           

Patient 1   2   3   4   5   

1 B 2.92 E 2.43 A 2.19 C 2.71 D 2.71 

2 D 2.86 A 1.64 E 3.02 B 3.03 C 3.03 

3 E 1.97 B 2.5 C 2.47 D 2.65 A 1.89 

4 A 1.99 C 2.39 D 2.37 E 2.33 B 2.71 

5 C 2.64 D 2.31 B 2.44 A 1.89 E 2.78 

 
(a) What are the nuisance factors in this problem? What is the appropriate model for this data? 
(b) Write down the classical effect model for this design and determine if there are any significant 

differences among the treatments. 
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(c) Use an appropriate method to determine if there is a significant difference between the placebo and 
other four drugs? 

(d) Use an appropriate method to determine which drug/drugs has/have the highest rating?  
(e) Use residual plots to check the assumption for the model you fit. 

 
3. A manufacturing firm investigated the breaking strengths of components made from raw materials 

purchased from 4 supplies (A, B, C, D). Data was collected from 2 replicates of a 4X4 Latin square 
design. The blocking factors were days and operators.  

 
(a) The same four operators were used in both replicates. Each replicate was also run on the same four 

days with replicated values taken during the morning and afternoons of these four days. Write down 
the statistical model for this data. Is there any significant difference among the different supplies? 

 

    Replicate 1   
 

    Replicate 2   

  
 

Days 
 

  
 

  
 

Days 
 

  

  1 2 3 4 
 

  1 2 3 4 

Operator B C A D 
 

Operator D C A B 

1 810 1080 700 910 
 

1 840 1050 775 805 

  C D B A 
 

  A D B C 

2 1100 880 780 600 
 

2 670 930 720 1035 

  D A C B 
 

  C B D A 

3 840 540 1055 830 
 

3 980 700 810 610 

  A B D C 
 

  B A C D 

4 650 740 1025 900 
 

4 860 730 970 900 

 
(b) Eight operators were used with four operators randomly assigned to each replicate. The two replicates 

were run over 8 days with the first 4 days assigned to replicate 1 and the second four days assigned to 
replicate 2. Write down the statistical model for this data. Is there any significant difference among the 
different supplies? 
 

    Replicate 1   
 

    Replicate 2   

  
 

Days 
 

  
 

  
 

Days 
 

  

  1 2 3 4 
 

  1 2 3 4 

Operator B C A D 
 

Operator D C A B 

1 810 1080 700 910 
 

5 840 1050 775 805 

  C D B A 
 

  A D B C 

2 1100 880 780 600 
 

6 670 930 720 1035 

  D A C B 
 

  C B D A 

3 840 540 1055 830 
 

7 980 700 810 610 

  A B D C 
 

  B A C D 

4 650 740 1025 900 
 

8 860 730 970 900 

 


