MATH 4220 Dr. Zeng
Student Activity 6: Randomized Block Design, Latin Square, Repeated Latin Square, and Graeco Latin Square

Consider the “one-way treatment structure in a completely randomized design structure” experiment.

We have “a” treatments, each replicated n times (we consider the balanced case for simplicity). The
appropriate means model is

Y =u +¢, i=12,..,a
/ / where &, ~iidN (0,0”)

The error terms ¢, denote the plot to plot variation in the response that cannot be attributed to the
treatment effect.

The variance o is a measure of this variation. If the plots are more alike (homogeneous) then ¢’
will be low. If the plots are very different from one another o will be large.

A small o” enables an experimenter to attribute even small variation in the treatment sample means
Y.,... Y, to differences between treatment (population) means y; . In other words, a small o’ results

in a more powerful F-test. The reverse is true if o is large.

Thus, one of the main tasks of an experimenter is to reduce o’ by using homogeneous experimental
units.

However, one should make sure that such homogeneity does not compromise to applicability of the
results.

[e.g.: Using white males ages 21-25 in a test of a hair growing formulation
will make the results inapplicable to older males and individuals of
other races or females.

Another way to reduce o’ is by grouping experimented units that are more alike.

eg. 1) We have two drugs to be tested. Use identical twins, say
5 pairs. Randomly pick one twin from each pair and give
drug one. The other twin gets drug two. We rely on the
fact that within pair of twin variation is less than between
pair of twin variation.

e.g.. 2) We need to test two types of shoe soles. Pick 20 people
and randomly assign one type of sole to one foot of each
person and the other type to the other foot. Here again,
between foot variation within a person is less than between
person variation.

e.g.. 3) In an agricultural experiment to compare the yield of 4 varieties
of soybeans, divide experimental land into four blocks, each
block containing 5 plots (i.e. experimental units). In each block,
randomly assign each variety to a plot.
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All the above are examples of “BLOCKING”. In example 1), the block is a pair of twins, in example
2), the block is a person, and in example 3), the block is a piece of land consisting of 5 adjoining
plots.

In all cases, plot to plot variation within a block is less than block to block variation.

THE MEANS MODEL FOR A ONE-WAY (FIXED EFFECT) TREATMENT STRUCTURE IN A
RANDOMIZED BLOCK DESIGN

Zj :yi+ﬂj+g[j i=12,..,a
j=12,..,b
B, ~ iidN(o0,07})
where ) ,
&; ~dN (O,a )
and B,,¢; are independent.

4, denote the population mean for the i" treatment

One can consider the above model as a two-way model where the row effect is fixed but the
column effect is random (so it is a mixed model). In fact, the appropriate sum of squares can be
obtained by treating it as a two-way model without interaction.

The plot to plot variation within a fixed block is °. Thus, the error variance of a plot selected
randomly from a pre-specified block (after accounting for the block effect) is o”.
Thus Var(Y,, - Y, )= Var(s,,— &,,)=20°. However, the variance of the response of a plot randomly

. : : : b-1 e :
picked from the totality of b plots is not o” butis ¢’ e o,(~ o’ +o, ifbis large). Note that o} is

the block variation (scaled to reflect the plot size).
If o, is large, then blocking will enable to come up with a more “sensitive” experiment.

THE CLASSICAL MODEL

Ifj:,u+a[+ﬂj+gij i=12,..,a

&;,p3; defined as before.

Observe that we have no interaction term. In blocked experiments, it is assumed that there
is not block by treatment interaction.

a b
The constraints assumed are Y a, = 0 and Z,Bj =0. The second restriction is needed only if

i=1 j=1
the blocking effect is considered fixed.
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AN EXAMPLE OF AN ANALYSIS OF DATA FROM A
RANDOMIZED COMPLETE BLOCK DESIGN

Example 1: Three different washing solutions are being compared to study their effectiveness in
retarding bacteria growth in 5-gallon milk containers. The analysis is done in a laboratory, and only
three trials can be run on any day. Because days could represent a potential source of variability, the
experimenter decides to use a randomized block design. Observations are taken for four days, and
the data are shown here. Analyze the data from this experiment and draw conclusions.

In this example, the blocking factor is the day. The treatment is “solution”. We have three types of
solutions and four levels for “day.”

Days
Solution 1 2 3 4
1 13 22 18 39
2 16 24 17 44
3 5 4 1 22

options 1s=72 nodate;
data wash;

input solution day bacteria;
cards;

11 13

22

18

39

16

24

17

44

5

4

1

22

s LW W WWNhMNDNNNFEE R
B WODNE D WNE WD

proc print;

titlel ' MATH 338 : Experimental Design';

title2 'Example on Randomized Complete Block Design';
title3 'List of Data';

proc glm;

title3 'analysis of variance results';

class solution day;

model bacteria = day solution / solution;
means solution / tukey;
proc glm;

title3 'analysis of variance results with lsmeans';
class solution day;

model bacteria = day solution / solution;

lsmeans solution / tdiff;

run;
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THE SAS OUTPUT IS GIVEN BELOW

MATH 338 : Experimental Design
Example on Randomized Complete Block Design
List of Data

Obs| solution day bacteria
1 1 13
22
18
39
16
24
17
44
5
4

1
22

W ONON R WN =

10
1
12

W W RIRIIN N = =
PN = W= W

Page Break
MATH 338 : Experimental Design

Example on Randomized Complete Block Design
analysis of variance results
The GLM Procedure

Class Level Information
Class Levels Values
solution 3123

day 41234

Number of Observations Read |12
Number of Observations Used 12

MATH 338 : E)Eperimental Design
Example on Randomized Complete Block Design
analysis of variance results

The GLM Procedure

Dependent Variable: bacteria

Source DF Sum of Squares Mean Square F Value Pr>F
Model 5 1810.416667  362.083333  41.91 0.0001
Error 6 51.833333 8.638889
Corrected Total 11 1862.250000

R-Square Coeff Var Root MSE bacteria Mean

0.972166 1567573 2.939199 18.75000

Source DF Type | S8 Mean Square F Value Pr=F
day 3 1106916667 368972222 4271 0.0002
solution 2 703.500000  351.750000 40.72 0.0003

Source DF| Typelll S§ Mean Square F Value Pr>F
day 3 1108.916667  368.972222  42.71 0.0002
solution| 2 703.500000 351750000 4072 0.0003

Standard

Parameter Estimate Error t Value Pr > |t
Intercept 2425000000 B 2.07832732 11.67 <.0001
day 1 | -23.66666667 B 230084567 -9.86 <0001
day 2 | -18.33333333 B 2.39984567 -7.64 0.0003
day 3 | -23.00000000 B 2.39984567 -9.58 <.0001
day 4 0.00000000 B . .
solution 1 15.00000000 B 2.07832732  7.22 0.0004
solution 2 1725000000 B 207832732  8.30 00002
solution 3 0.00000000 B



MATH 4220 Dr. Zeng
MATH 338 : Experimental Design
Example on Randomized Complete Block Design
analysis of variance results
The GLM Procedure

Tukey's Studentized Range (HSD) Test for bacteria

Note: This test controls the Type | experimentwise error rate, but it generally has a higher Type Il error rate than REGWQ.

Alpha 005
Error Degrees of Freedom 6
Error Mean Square 8.638889
Critical Value of Studentized Range | 433917
Minimum Significant Difference 6.3768

Means with the same letter
are not significantly different.
Tukey Grouping | Mean N solution

A 25250 42

A

A 23.000 41

B 8.000 43
Page Break

MATH 338 : Experimental Design
Example on Randomized Complete Block Design

analysis of variance results with Ismeans
The GLM Procedure

Class Level Information
Class Levels Values
solution 3123

day 41234

Number of Observations Read 12
Number of Observations Used 12
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Source

Example on Randomized Complete Block

Design

analysis of variance results with Ismeans

The GLM Procedure

Dependent Variable: bacteria

Corrected Total | 11 1862.250000

DF| Sum of Squares Mean Square F Value Pr>F
Model 5 1810.416667  362.083333  41.91 0.0001
Error 6 51.833333 8638889

R-Square Coeff Var Root MSE | bacteria Mean

0.972166 15.6757/3 2.939199 18.75000
Source DF Type | 88 Mean Square F Value Pr>F
day 3 1106.916667  368.972222 4271 0.0002
solution 2 703.500000 351.750000 40.72 0.0003
Source DF Typelll §§ Mean Square F Value Pr>F
day 3 1106.916667  368.972222 4271 0.0002
solution 2 703.500000  351.750000 40.72 0.0003

Standard
Parameter Estimate Error|t Value Pr = |t
Intercept 24 25000000 B 207832732 11.67 <.0001
day 1 | -23.66666667 B 2.39984567 -9.86 <.0001
day 2 | -18.33333333 B 2.39984567 -7.64 0.0003
day 3 | -23.00000000 B 2.39984567 -9.58 <.0001
day 4 0.00000000 B i i i
solution 1 15.00000000 B 207832732 7.22 0.0004
solution 2 17.25000000 B 2.07832732  6.30 0.0002

solution 3  0.00000000 B

Page Break
MATH 338 : Experimental Design

Example on Randomized Complete Block

uations. Terms whose estimates are followed by the letter 'B' are not uniquely estima

Design

analysis of variance results with Ismeans

The GLM Procedure
Least Squares Means

solution bacteria LEMEAN LSMEAN Number

1 23.0000000
2 25.2500000
3 8.0000000

Least Squares Means for Effect solution
t for HO: LSMean(i)=LSMean(j) / Pr > |t|
Dependent Variable: bacteria

ilj 1 2 3
1.0826  7.217342
1 0.3206 0.0004
1.082601 8.299944
2 0.3206 0.0002
721734 -8.29994
3 0.0004 0.0002

1
2
3

Dr. Zeng
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OTHER BLOCK DESIGNS

There are many types of block designs, with RCB being one of them. Some of the other block
designs are Latin Square Designs, Greaco-Latin Square Designs, and Split-Plot Designs.

LATIN SQUARE DESIGN

In a randomized complete block design, the blocking was done to reduce variation that can be
attributed to some random (and in some cases fixed) factor. For example, in an agricultural
experiment, blocking may be done to remove the effect due to a fertility gradient; in a chemistry
experiment blocking may be done to remove the effect of the chemists’ skills. In some situations, it is
possible that one wishes to remove the effect of two factors. Then blocking has to be done in two
“directions”, each “direction” corresponding to the “gradient’ of a given factor.

e.g: An agricultural scientist wishes to study the effects of 4 different kinds of fertilizer
on a certain variety of wheat. The experimental field in which the wheat
is to be grown has a moisture gradient in one direction and a sunlight
gradient perpendicular to it.
Hence we need to block in both directions.

Column Blocks

Row Blocks Sun Light Gradient

Sl w|a
‘N Aol Ho Y -
SV N Ko
CIENIS

Moisture Gradient

One may block as above (with 4 row blocks to take care of the sunlight
gradient and 4 column blocks to take care of the moisture gradient).

If you now apply the four fertilizers (i.e. treatments A,B,C,D) in such a
way that each treatment occurs once (and only once) in each row and
in each column, then we have what is known as a Latin Square Design.

Usually, the row block effects and the column block effects are random effects and it is assumed that
there is no row * column, row * treatment, column * treatment and row * column * treatment
interaction. In fact, it is the contrasts that estimate the above interactions that are used to estimate
the error variance o”.

Sometimes, the row effect or the column effects are those due to a specific treatment (or both are).
Thes, the rows, columns (or both) are fixed effects.
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e.g.:

In the agriculture example given above, suppose the
experimental field is homogeneous (and hence no blocking

is necessary), but the agriculturalist is interested in two other
factors, namely wheat variety and time of application of fertilizer.
Suppose each of these two factors also have 4 levels each.

Then, the agriculturalist could have conducted a 3-way
experiment. With 2 replications for each of the 4*4* 4
treatment combinations, be would need 128 experimental
units (plots).

Suppose he knows that no interaction exists, so he need not

Replicate because interaction contrast can be used to estimate error.

Even then he needs 64 plots.

Now, if the no interaction hypothesis is true (i.e. no variety *
fertilizer, variety * time, time * fertilizer, and variety * time *

fertilizer interactions), then he could use the design in on this page
with the varieties randomly assigned to the rows and times

of fertilizing randomly assigned to the columns. This way, he
needs only 16 plots!

Usually, however, such an assumption of no interaction is not
reasonable and thus the agriculturalist may end up having to
use 128 plots.

THE GENERAL MEANS MODEL FOR A LATIN SQUARE DESIGN

Y.=u +aj+ﬂk+gijk

i=L2,..,p
j=12,...p (p =# of treatments =# of rows =# of columns)
k=12,...,p

Here i denotes the treatment

Herej denotes the row
Here k denotes the column

where a, ~ iidN(0, o} )

with ;¢ independent

p; ~iidN (0,57 )
&, ~iidN(0,0)

If row and column effects are random

Dr. Zeng
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or

.. 2
Vi=thy+én »  Ep~ zsz(O,a )
ifrow & column effects are fixed.

THE GENERAL CLASSICAL MODEL FOR LATIN SQUARE DESIGN
Yijk =U+T ta; + B, + Eiji

V%
L k=12,..,p , D.5=0

i=1

(z;-denoting the treatment effect and «-denoting the overall mean)
and if &, 3, are considered random effects. I this case * above holds.

p p
If o, 3, are fixed, then > o, =0, > B, =0 and ¢, ~ iidN(0,5°).
j=1 k=1

Note that the above model is completely additive. That is, it has no interaction terms.

ANALYSIS OF A LATIN SQUARE DESIGN

P
SSTreatment = ZpYiozo - NYf.
i=1

P
SSCqumns = ZpY.fk - NKZ.

It can be shown that SS.

T reatments S9Rows Scoumns &€ INdependent, and are also independent of SS¢
where

ror

SSError = SSrotaI - SSTreatment - SSRows - SSCqumns

Further,
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S reatmen / p_ 1
£ = —Stsanen /(0= 1) ~F(p-1,(p-2)(p-1))

" S /(P =20~ 1)

H, 7,=t1,=..=1,=0 (otherwise, F, has a non-central F distribution).

o

THE ANOVA TABLE

Source d.f. SS MS F
Treatments p-1 S8 reatment MS; catment r = %
Rows p—1 SSeous MSzous
Columns p-1 SScotumns MSzotumns
Error (p—2Xp-1) SSeror MSz o,

Total p -1 SSTotal

Then analysis using SAS can be done as follows:

proc glm data=yourdata;
class row col treatment;
model y = row col treatment;
means treatment/lsd tukey;
run,

Example 2: Consider an experiment to investigate the effect of 4 diets on milk production. There are
4 cows. Each lactation period the cows receive a different diet. Assume there is a washout period so
previous diet does not affect future results.

options nocenter Is=75;

data milk;

input cow period trt resp @@,;
cards;
11138122321333514433
21239223372343624130
31345324383313734235
41441421304323244333

proc glm;

class cow trt period;
model resp=trt period cow;
means trt/Isd tukey;
means period cow;

10
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output out=new r=res p=pred,

symboll v=circle;
proc gplot;
plot res*pred,;

proc univariate noprint normal;

histogram res/normal (L=1 mu=0 sigma=est) kernel (L=2);

ggplot res/normal (L=1 MU=0 sigma=est);

run;

The GLM Procedure

Class Level Information
Class Levels Values

cow 41234
trt 41234
period 41234

Number of Observations Read 16
Number of Observations Used 16

The GLM Procedure

Dependent Variable: resp

The GLM Procedure

t Tests (LSD) for resp

Means with the same letter
are not significantly different.
t Grouping Mean N trt

A 37.5000 43
A
A 37.0000 44
B 34.5000 42
B
B 33.7500 41

Error 6 4 8750000
Corrected Total | 15 2474375000

Alpha 0.05
Error Degrees of Freedom 6
Error Mean Square 0.8125
Critical Value of t 2. 44691

Least Significant Difference  1.5596

Source DF Sum of Squares Mean Square F Value Pr>=F
Model 9 242 5625000

26.9513889  33.17 0.0002
0.8125000

R-Square Coeff Var Root MSE resp Mean
0.980298 2525780 0.901388 35.68750

Source DF Type | 58 Mean Square F Value
trt 3 40.6875000  13.5625000  16.69
period | 3 147.1875000  49.0625000 60.38
cow 3 54.6875000  18.2291667 2244
Source DF Type lll S8 Mean Square F Value
trt 3 40.6875000  13.5625000 16.69
period | 3 147.1875000  49.0625000 60.38
cow 3 54.6875000  18.2291667 2244

Pr>F
0.0026
<.0001
0.0012

Pr>F
0.0026
<.0001
0.0012

Mote: This test controls the Type | comparisonwise error rate, not the experimentwise error rate.

11
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The GLM Procedure

Tukey's Studentized Range (HSD) Test for resp

Note: This test controls the Type | experimentwise error rate, but it generally has a higher Type Il error rate than REGWQ.

Alpha 0.05
Error Degrees of Freedom 6
Error Mean Square 0.8125
Critical Value of Studentized Range 4.89559
Minimum Significant Difference 2.2064

Means with the same letter
are not significantly different.
Tukey Grouping Mean N trt

A 37.5000 4 3
A
A 37.0000 4 4
B 34.5000 42
B
B 33.7500 41

The GLM Procedure

Level of resp
period N Mean Std Dev
1 4 40.7500000 3.09569594;
2 4 342500000 3.88221008
3 4 35.0000000 216024690
4 4 32.7500000 2.06155281
Level of resp
cow N Mean Std Dev
1 4 34.5000000 2.64575131
2 4 355000000 3.87298335
3 4 38.7500000 4.34932945
4 4 34.0000000 483045892
Page Break 5
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Page Break
The UNIVARIATE Procedure
Fitted Normal Distribution for res
Parameters for Normal Distribution
Parameter | Symbol Estimate
Mean Mu 0
Std Dev Sigma 0.551985
Goodness-of-Fit Tests for Normal Distribution
Test Statistic p Value
Cramer-von Mises W-Sq| 0.07262919 Pr > W-Sq >0.250
Anderson-Darling |A-Sq  0.54792384 Pr > A-Sq =>0.250
Quantiles for Normal Distribution
Quantile
Percent, Observed Estimated
1.00  -0.62500  -1.28411
5.0 -0.62500 -0.90793
10.0° -0.62500 -0.70740
25.0 -0.62500 -0.37231
50.0 0.00000 0.00000
75.0 0.37500 0.37231
90.0 0.87500 0.70740
95.0 1.12500 0.90793
99.0 1.12500 1.28411
Page Break
The UNIVARIATE Procedure
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REPEATED LATIN SQUARES

One disadvantage of a Latin Square Design is that smaller squares yield low d.f. for error (e.g. A3x 3
design has only 2 d.f. for error; a 5 x 5 design has only 12 d.f. for error). To overcome this problem,
one may replicate the Latin Square n times (n>1).

Case 1l

Latin Squares replicated with same blocks. (Use the same col & row in each replicate)
The classical model is:
Yiee =+ T+ + B, +6, + &

T

Replication

i,j,kas before, (=1,2,...,n, where 6, denote the effect of the ("™ square
(which is also a block effect).

P
SSTreatment = an Y,'.z.. -N Y2 where N =np2 .
i=1

13
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P
SSRows = an zi.. - N ?j..
=1
C 2
Columns Z ..ko Y....
k=1
SSRepIication: ,02 )_Z-Z-( - N }_/:3..
=1
(= SSSquares)
Total ZZZZ ijk( - N cece
Error SSI’otaI SSRows Columns SSRep.
ANOVA
Source d.f. SS MS
s,
Treatments P~ 1 SSTreatment MSI'reatment MSE,T:;
Rows P~ 1 SS, Rows MSROWS
Columns P~ 1 SSColumns MSCqumns
Replicates n—1 SSRepIicates MSRepIicates

Error (o= D[n(p +1)-3] SSeror Meror

Total np’ —1 SS

Total

14
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Example 3 (Case 1): Same rows and same columns in additional squares

response
7 8 9
5 6
6 3 4

=

O|m(>|-

>IO[m|N

(> |O|w
o

> @ O|-

O|>|®m|N

™ O|>|w
(%)
N
~

O|>| @
®O>N
D|lmO|W
ul
~
(o))

data casel;
input rep row col trt resp;
datalines;
11117
11228
11339
12124
12235
12316
13136
13213
13324

21138
21224
21317
22126
22213
22336
23115
23327

31129
31216
31338
32115
32237
32326
33139

15
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33223
33317
proc glm data=casel;
class rep row col trt;
model resp=rep row col trt;
run;
quit;
The GLM Procedure
Class Level Information
Class | Levels Values
rep 3123
row 3123
col 3123
trt 3123
Number of Observations Read 26
Number of Observations Used 26
The GLM Procedure
Dependent Variable: resp
Source DF Sum of Squares Mean Square F Value| Pr>F
Model 8 57.64245014  7.20530627 434 0.0053
Error 17 28.20370370,  1.65904139
Corrected Total 25 85.84615385
R-Square Coeff Var Root MSE resp Mean
0.671462 21.19556 1.288038 6.076923
Source DF Type | 8§ Mean Square F Value Pr>F
rep 2 479059829 239529915 1.44 02636
row 2 2224747475 11.12373737 6.70 0.0071
col 2 1940252525  9.70126263 585 0.0117
trt 2 11.20185185 560092593 3.38 0.0583
Source DF Type lll 8§ Mean Square F Value Pr>F
rep 2 533518519 266759250 1.61 02293
row 2 2244629630 11.22314815 6.76 0.0069
col 2 16.41851852  8.20925926 495 0.0202
trt 2 11.20185185  5.60092593 3.38 0.0583
Case 2 Replicated by introducing additional versions of one blocking factor but using the

same blocks for the other blocking factor. (use different rows but same columns in each

replicate)

w.l.0.g. assume that columns blocks are repeated but row blocks have additional versions.

The classical model is:

Y

(=1,2,..,n

wmezggg

ikt

ijk(:ﬂ+z—i+aj€+ﬂk+9(+gjk€

Y2, — n Y2

16
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where N =np’
p — —
SSTreatment = an Yiozu - N Yofoo
i=1
P n n _
SSROWS = zzp)ﬁo( - szYuz-(
i=1 (=1 (=1
SSCqumns = an)_].fko - N an
k=1
SSRepIicates: sziiz - N ?.-2..
(-1
SSError = SSrotaI - SSrrt - SSRows - SSCoI - SSRep
ANOVA
Source d.f. SS MS F
M.
Treatments P— 1 SSTreatment MSI’reatment E’ - ESM
ROWS n(p - 1) SSRows MSROWS
COIumnS ,0—1 SSColumns MSCqumns
Rep"cates n—1 SSRepIicates MSRepIicates
Error n (p _1)(10 _1) SSError MSError
TOtal np2 _1 SSTotaI

17
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Example (Case 2): New (different) rows and same columns
1 2 3 response
1 A B C 7 8 9
2 B C A 4 5 6
3 C A B 6 3 4
1 2 3
4 C B A 8 4 7
5 B A C 6 3 6
6 A C B 5 8 7
1 2 3
7 B A C 9 6 8
8 A ¢ B 5 7 6
9 ¢ B A 9 3 7
Case 3 Latin Squares replicated by introducing additional versions of both blocking variables.

(use different row & col in each replicate)
The model is:

Y

SS.

Tota

SS.

Treatment

SS,

Rows

SS,

Columns

SSx p’

eplicates:
(=1

SS,

Error

The ANOVA table as in Case 2, except SS.
has (p-1)[n(p-1)-1] d.f.

ijk[:ru+ri+aj(+ﬂk€+8(+g“

?2

Y4

olumn

ijk(

, computed as before
computed as before

computed as before

1
Mb
R
!
N
M
b‘\)
fﬂ

— N Y., where N=np’

obtained by subtraction.

computed differently and has n(p—1) d.f. and SS;

18
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SAS can be used to analyze repeated Latin Squares as follows:

Example 4 (Case 3): different rows and new columns

1 2 3 response
1 A B C 7 8 9
2 B C A 4 5 6
3 C A B 6 3 4
4 5 6
4 C B A 8 4 7
5 B A C 6 3 6
6 A C B 5 8 7
7 8 9
7 B A C 9 6 8
8 A C B 5 7 6
9 C B A 9 3 7

Case 1 (rows and columns crossed w/reps)

proc glm data=yourdata;

class rep row col treatment;
model y = rep row col treatment;
run;

Case 2 (row nested, columns crossed w/reps)

proc glm data=yourdata;

class rep row col treatment;

model y = rep row(rep) col treatment;
run;

Case 3 (rows and columns nested w/reps)

proc glm data=yourdata;

class rep row col treatment;

model y = rep row(rep) col (rep) treatment;
run;

Note: ROW (REP) gives SS due to rows within replication. (Similarly for COLUMN (REP)).
19
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GRAECO-LATIN SQUARES

Def" Leta pxp Latin square consists of Latin letters and another acp Latin square consist of Greek
letters. Suppose they have the property that when superimposed, each Latin letter coincides
exactly once with each Greek letter. Then the two squares are said to be orthogonal.

A collection of n  pxp Latin squares are said to be a mutually orthogonal set of Latin squares

if each letter in one square coincides with each combination of the letters in the other squares
exactly once.

Def." A pair pxp Latin, Greek, Greek squares that are orthogonal form a Graeco-Latin square.

Using a Graeco-Latin square, one may block in a 3" direction or analyze a 2" treatment.

An example of a Graeco-Latin Square

Aa B CJ Do Eg
B0 Co6 De Ea Ap
Ce Da Ef A Bo
DS EJ Ao Be Ca
E6 A¢ Ba Cp DO

Note: When more than two orthogonal Latin squares are superimposed, we obtain a Hyper-Graeco-
Latin square.

Analysis of Graeco-:Latin Squares

Model is:
Yi=pu+t,+w +a,+p0 +&,
T T

Latin Greek Row Column
TRT Letter

z
Stotal = ZZZZ ikt N ¥, . Where N=p .

_ d.f)
—SSLaﬁn=ZpY,.2.. - N Y.. (p-1)

P
SSGreek = ZpYoioo - Yj.o (,0—1)

J=1
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SSROWS = szofko ?ofoo (p - 1)
k=1
S Y v2
SSCqumns: ZpYo'o[ - Y.... (p—l)

(=1

SSe.,., obtained by subtraction (p-3)p-1))

SAS can be utilized as follows:

proc glm data=yourdata;
class greek row col tx;
model y = row col greek tx;
run;

Example 5: Graeco-Latin Square

An experiment is conducted to compare four gasoline additives by testing them on four cards with
four drivers over four days. Only four runs can be conducted in each day. The response is the amount
of automobile emission.

Treatment factor: gasoline additive, denoted by A, B, C, and D

Block factor 1: driver, denoted by 1,2,3,4

Block factor 2: day, denoted by 1,2,3,4

Block factor 3: car, denoted by a, 3, y, ©

days
drivers 1 2 3 4
“ IS

o

1 Aa = 3

()

5) Cvy =31 [)4\ — _)4-

2 Bd = 24 Ay = 36 DB=20 Ca=25
3 CB=28 Da=30 A6=23 B~ 31
4 Dy=34 C6=35 Ba=29 AB=233

Graeco-Latin Square Design Matrix:

driver day additive car

1 1 A Q

1 2 B 3
1 3 (&4 o
1 4 D B
1 D 1

¢ )

E N R S -
A ON
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SAS codes:

data additives;
input row col trt greek resp @@;
datalines;
111132122225
133331144427
212424221336
234220243125
313228324130
331423342331
414334423435
432129441233

proc glm data=additives;
class row col trt greek;

model resp=row col trt greek;
run;

Multiple comparisons can be carried out using similar methods.

SAS outputs:
The GLM Procedure
Class Level Information
Class | Levels Values
row 41234
col 41234
trt 41234
greek 41234
Number of Observations Read 16
Number of Observations Used 16
Page Break
The GLM Procedure
Dependent Variable: resp
Source DF| Sum of Squares| Mean Square F Value Pr>F
Model 12 296.7500000  24.7291667 283 0.2122
Error 3 26.1875000 87291667
Corrected Total 15 322.9375000
R-Square Coeff Var Root MSE resp Mean
0.918908 10.20999 2954516 28.93750
Source DF Type | 85 Mean Square| F Value Pr>F
row 3 906875000 302291667 3.46 0.1674
col 3 68.1875000  22.7291667 2.60 0.2263
trt 3 36.6875000 122291667 1.40 0.3942
greek 3 101.1875000  33.7291667 3.86 0.1481
Source DF Type lll 8§ Mean Square F Value Pr>F
row 3 906875000 302291667 3.46 0.1674
col 3 68.1875000  22.7291667 2.60 0.2263
trt 3 36.6875000  12.2291667 1.40 0.3942
greek 3 101.1875000  33.7291667 3.86 0.1481
Practice:

1. Run the repeated Latin square design case 2 and 3. Interpret your result.

2. Interpret the result for Example 1-4

3. Draw conclusion for Example 5. Include the analysis of multiple comparisons.
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Assignments:

1.

Lew (2007) presents the data from an experiment to determine whether cultured cells respond to two
drugs. The experiment was conducted using a stable cell line plated onto Petri dishes, with each
experimental run involving assays of responses in three Petri dishes: one treated with drug 1, one
treated with drug 2, and one untreated serving as a control. The data are shown in the table below:

Control | Drugl Drug 2
Experiment 1 1147 1169 1009
Experiment 2 1273 1323 1260
Experiment 3 1216 1276 1143
Experiment 4 1046 1240 1099
Experiment 5 1108 1432 1385
Experiment 6 1265 1562 1164

(a) Analyze the data as if it came from a completely randomized design (CRD). Write down the classical

effect model for CRD and the five steps for hypothesis testing. Is there a significant difference between
the treatment groups?

(b) Analyze the data as complete randomized block design (CRBD). What is the treatment? What is the

(c)

blocking factor? Write down the classical effect model for CRD and the five steps for hypothesis
testing. Is there a significant difference between the treatment groups?

Is there any difference in the results you obtain in (a) and (b)? If so, explain what may be the cause of
the difference in the results and which method would you recommend?

Le Riche and Csima (1964) evaluated four hypnotic drugs and a placebo to determine their effect on
quality of sleep in elderly patients. The treatment levels were labeled (A=Placebo, E=Ethchlorvynol,
C=Glutethimide, D=Chloral hydrate and E=Secobarbitol sodium). Elderly patients were given one of the
capsules for five nights in succession and their quality of sleep was rated by a trained nurse on a four-
point scale (O=poor to 3=excellent) each night. An average score was calculated for each patient over
the five nights in a week. Each patient received all five treatments in successive weeks. The design and
the response (mean quality of sleep rating ) are shown in the table below:

Week
Patient 1 2 3 4 5
1 B 2.92 E 2.43 A 2.19 C 2.71 D 2.71
2 D 2.86 A 1.64 E 3.02 B 3.03 C 3.03
3 E 1.97 B 2.5 C 2.47 D 2.65 A 1.89
4 A 1.99 C 2.39 D 2.37 E 2.33 B 2.71
5 C 2.64 D 2.31 B 2.44 A 1.89 E 2.78

(a) What are the nuisance factors in this problem? What is the appropriate model for this data?
(b) Write down the classical effect model for this design and determine if there are any significant

differences among the treatments.
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(c) Use an appropriate method to determine if there is a significant difference between the placebo and
other four drugs?
(d) Use an appropriate method to determine which drug/drugs has/have the highest rating?
(e) Use residual plots to check the assumption for the model you fit.

3. A manufacturing firm investigated the breaking strengths of components made from raw materials
purchased from 4 supplies (A, B, C, D). Data was collected from 2 replicates of a 4X4 Latin square
design. The blocking factors were days and operators.

(a) The same four operators were used in both replicates. Each replicate was also run on the same four
days with replicated values taken during the morning and afternoons of these four days. Write down
the statistical model for this data. Is there any significant difference among the different supplies?

Replicate 1 Replicate 2
Days Days
1 2 3 4 1 2 3 4
Operator B C A D Operator D C A B
1 810 1080 700 910 1 840 1050 775 805
C D B A A D B C
2 1100 880 780 600 2 670 930 720 1035
D A C B C B D A
3 840 540 1055 830 3 980 700 810 610
A B D C B A C D
4 650 740 1025 900 4 860 730 970 900

(b) Eight operators were used with four operators randomly assigned to each replicate. The two replicates
were run over 8 days with the first 4 days assigned to replicate 1 and the second four days assigned to
replicate 2. Write down the statistical model for this data. Is there any significant difference among the
different supplies?

Replicate 1 Replicate 2
Days Days
1 2 3 4 1 2 3 4
Operator B C A D Operator D C A B
1 810 1080 700 910 5 840 1050 775 805
C D B A A D B C
2 1100 880 780 600 6 670 930 720 1035
D A C B C B D A
3 840 540 1055 830 7 980 700 810 610
A B D C B A C D
4 650 740 1025 900 8 860 730 970 900




