Math 4200 Student Activity 3 Properties of Estimators and the Methods of Estimation

1. Let Y_1, \ldots, Y_n be a random sample from a $Unif(0, \theta)$. Let

$$\hat{\theta}_1 = \frac{n+1}{n}(Y_{(n)})$$
 $\hat{\theta}_2 = 3\bar{Y}$

- (a) Is $\hat{\theta}_1$ an unbiased estimator for θ ? Justify your answer.
- (b) Is $\hat{\theta}_2$ an unbiased estimator for θ ? Justify your answer.
- (c) Find the efficiency of $\hat{\theta}_2$ relative to $\hat{\theta}_1$.

2. Let Y_1, \ldots, Y_n be a random sample from the probability density function

$$f(y|\theta) = \theta y^{\theta-1}, \quad 0 \le y \le 1$$

where $\theta > 0$. Show that \overline{y} is a consistent estimator of $\frac{\theta}{\theta+1}$.

3. Let Y_1, \ldots, Y_n be a random sample from a population with the following pdf:

$$f(y|\alpha,\beta) = \alpha\beta^{\alpha}y^{-(\alpha-1)}, \quad y \ge \beta$$

This distribution is known as the Pareto distribution.

- (a) Find the likelihood function.
- (b) If α is known, show that $Y_{(1)}$ is sufficient for β .
- (c) Show that $\prod_{i=1}^{n} Y_i$ and $Y_{(1)}$ are jointly sufficient for α and β .
- 4. Let Y_1, \ldots, Y_n be a random sample from a normal distribution with mean μ and variance 1.
 - (a) Show that the MVUE of μ^2 is $\widehat{\mu^2} = \overline{y}^2 1/n$.
- 5. Let Y_1, \ldots, Y_n be a random sample from the population with pdf

$$f(y|\theta) = \frac{1}{(r-1)!\theta^r} e^{-y/\theta} y^{r-1}, \quad y > 0$$

(a) Find an MVUE for θ .

- 6. Let Y_1, \ldots, Y_n be a random sample from a $Pois(\lambda = \theta)$.
 - (a) Determine the MLE of θ .
 - (b) Determine the MLE of the standard deviation of the distribution.
- 7. Let Y_1, \ldots, Y_n be a random sample from the population with pdf

$$f(y|\theta) = \frac{1}{\theta}e^{-y/\theta}, \quad y > 0$$

- (a) Find the MOM estimator for θ .
- (b) Find the MLE of θ .
- (c) Find the MLE of $P(Y \le 2)$.
- (d) Find the MLE of the median of the distribution.