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Abstract. Anatomical studies of plant hydraulic traits have tradition-
ally been conducted by manual measurements of light micrographs. An
automated process could expedite analysis and broaden the scope of
questions that can be asked, but such an approach would require the abil-
ity to accurately classify plant cells according to their type. Our research
evaluates a deep learning-based model which accepts a cropped cell image
input alongside a broader cropped image which incorporates contextual
information of that cell type’s original cropped image, and learns to seg-
regate these plant cells based off of the features of both inputs. Whilst a
single cropped image classification yielded adequate results with outputs
matching the ground-truth labels, we discovered that a second image
input significantly bolstered the model’s learning and accuracy (98.1%),
indicating that local context provides important information needed to
accurately classify cells. Finally our results imply a future application of
our classifier to automatic cell-type detection in xylem tissue image cross
sections.

1 Introduction

Plants are important global producers of oxygen and they serve as an important
food source for many animals. This makes plants essential for the existence of
most life on Earth. Most plant life on land is limited to some extent by water
availability. While most plants have some basic adaptations to control water loss
(such as a waxy cuticle covering the leaves and the ability to regulate water loss
through stomata), some plants have adapted to thrive in dry regions such as the
desert and chaparral ecosystems of southern California [1,2]. During drought,
some of the most dehydration tolerant chaparral shrubs can survive internal
water pressures that are more negative than −10 MPa, absolute pressures that
are equivalent to approximately 100 times Earth’s atmospheric pressure [3,4].

The ability of some plants to survive extreme dehydration is attributed
in part to anatomical characteristics of the plant vascular tissue system. The
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vascular tissue system is composed, in part, of xylem. Xylem tissue transports
water from the roots to the leaves. The xylem tissue contains several cell types
with distinct functions [5], that may be divided into three cellular classifications.
1) Tracheary elements are elongate tubes with a large diameter for the passive
transport of water, which is pulled through the plant by evaporation from the
leaves (i.e., transpiration). They have a thick secondary cell wall and are dead
upon maturity, facilitating their function of long-distance transport. There are
two types of tracheary elements that may be found within chaparral shrubs,
vessel elements and tracheids. 2) Fibers are also elongate cells, but they func-
tion primarily as mechanical support for the stem or root by means of their
thick cell walls with a narrow lumen. 3) Parenchyma cells are short cells that
have thin primary cell walls and are typically alive at maturity. They function
in short-distance transport and storage of water and starch (long-term sugar
reserves). There are two types of parenchyma cells that may occur within the
xylem, axial parenchyma and ray parenchyma. While all flowering plants have
these three cell types present in the xylem, structural adaptations within each
cell type can improve whole-plant dehydration tolerance. Additionally, different
species may differ greatly in the proportions of these cell type classes within
their xylem, with the amount of different cell type classes linked to differences
in plant function [6,7].

Small changes in xylem cell characteristics can have a large impact on their
function. For example, there is a tradeoff between hydraulic efficiency (which
contributes to greater sugar production and growth) and resistance to freezing-
induced gas bubble (embolism) formation in the vascular system (which can
lead to whole-plant mortality), with large diameter tracheary elements being
efficient but highly vulnerable to embolism [8–10]. In a similar way, tracheary ele-
ment implosion resistance (measured as the cell wall thickness to breadth ratio,
(t/b)2) also corresponds to dehydration-induced embolism resistance [11,12].
Although not directly conducting water, the fibers provide mechanical sup-
port (estimated by parameters such as wall thickness and lumen diameter) that
increases embolism resistance and the mechanical strength of the stem [2,12].
The proportion of the parenchyma within the xylem can indicate the plant’s rel-
ative carbon stores, with implications for tradeoffs related to carbon starvation
and drought tolerance [5,6,13].

Traditionally, all these measurements related to plant anatomy have been
taken manually or semi-automatically from light micrographs of transverse stem
sections. However, given the difficulty of scaling up time-intensive measurements
to whole ecosystems or the globe, it is compelling to find faster ways to measure
key xylem traits without compromising accuracy. There is a need for automated,
scalable software tools that could automatically analyze large datasets efficiently.
An accurate but automated way to measure anatomical traits could also allow
us to take advantage of increasingly available large image datasets [14]. In short,
a faster means of measuring key characteristics of xylem anatomy would greatly
broaden the scope of questions that can be asked about plant structure and
function. We tackle this problem in this paper by introducing a deep learning-
based model for classification of plant cells.
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2 Related Works

In recent years, cell type classification with machine learning has received
significant attention particularly in the medical field. Researchers have made
breakthrough findings in cancer cell type classifications [15] and cardiovascular
research [16], for example, where different types of white blood cells were segre-
gated through popular machine learning techniques such as Deep Learning, or a
Random Forest algorithms [17].

Although some prior studies have used semi-automated approaches to classify
plant cells [18], and there exists commercially available software such as Win-
CELL (Regent Instruments, Inc.), there are relatively few previous applications
of machine learning to plant hydraulic anatomy. Previous studies have applied
machine learning algorithms to topics such as plant disease classification [19]
and plant leaf classification [20]; however few studies have been conducted on
machine learning at the cellular level. Those studies at this microscopic level
have mainly been focused on the segmentation of plant tissues, then possibly
classifying those segmented images [14,21–24]. To our best knowledge, we are
the first group to design a cascade-like machine learning model to classify trac-
heary elements (vessels), fibers, and parenchyma cells in plants, with discussions
on the effects of inputting a contextualized image alongside the image to be
classified.

3 Dataset and Problem Definition

Our dataset for this project consists of light micrographs of transverse stem and
root sections of three chaparral shrub species native to the Santa Monica Moun-
tains in southern California: Ceanothus crassifolius (CCR), Ceanothus oliganthus
(CO), and Frangula californica (FCA). The samples were collected in 2007 at
Cold Creek Canyon (34◦05′36.0′′N, 118◦39′02.9′′W). Samples were taken from
three individuals of each species to account for genetic and phenotypic variation
among individuals. Thin circular slices of the stems and roots (transverse sec-
tions or “cross-sections”) were cut using a sledge microtome (Model 860 Sledge
Microtome, American Optical Corp., Buffalo, NY, USA). The cross-sections were
stained with I2KI (to show starch) and mounted in glycerol on microscope slides.
Images of the cross-sections were taken at 100× or 200× magnification using
a light microscope with an attached digital camera (Olympus BH-2, Olympus
Imaging Corp., Center Valley, PA; Spot Insight 2, v. 18.2 Color Mosaic, Diagnos-
tic Instruments, Inc., Sterling Heights, MI). Multiple (non-overlapping) images
were taken of each cross section, with each image showing at least 200 cells.
Our final dataset included 26 CCR, 22 CO, and 37 FCA images. The goal for
this research project is to classify three functionally distinct plant cell types
found in the xylem tissue (vessel, fiber, and parenchyma). Our objective is to
construct a machine learning model that learns the features of these plant cell
types alongside its surrounding characteristics to classify them with high accu-
racy. Flowering plants have two types of conductive tracheary elements: vessels
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Fig. 1. (A) Chaparral shrub stem cut transversely as to prepare cross sections. (B)
Micrograph of transverse cross section with labeled cell types. Boxes are placed as for
cropping. Scale bar = 50 µm.

(typically larger diameter, composed of multiple cells) and tracheids (typically
smaller diameter, composed of a single cell). However, it can be difficult to dis-
tinguish tracheids from other cell types in light micrographs, as large tracheids
can appear similar to small vessels and small tracheids can appear similar to
fibers. Thus, we did not attempt to identify tracheids in this study; we tried
to avoid using images of tracheids. For labeled vessels, we selected large cells
that were most likely vessels and not tracheids. However, it is possible that some
tracheids were incorrectly labeled as vessels or fibers. Additionally, the roots
of some shrubs contained gelatinous fibers, which are morphologically distinct
from the more common sclerenchyma fibers. We categorized all fibers (gelatinous
and sclerenchyma) as falling within the cell type class of “fibers” for this study.
Finally, we did not distinguish between axial and ray parenchyma, but rather
categorized them all within the cell type class of “parenchyma”.

All of the original images were re-scaled to 1600× 1200 for each image cross
section regardless of the shrub species. We utilized a manual image cropping
software called makesense.ai to crop the individual cells. We discarded all the
extremely zoomed out images and chose the images with good resolution. Since
vessels are the least abundant compared to fibers and parenchyma, we started
with cropping the vessels and cropping approximately the same amount for fibers
and parenchyma. The cells that are not fully shown in the image, i.e. are in
the corner or blurry, were not cropped. This process is depicted in Fig. 1. This
cropping process produced 790 unique images of vessels, fibers, and parenchyma
cells.

When splitting our data into training and testing sets, our group decided
to train a model on two shrub species and use the third species as an external
validation. All models were run three times, with different species used as the
test and training sets each time.
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Fig. 2. Illustration of cascade-like framework to achieve a multi-class classification
while avoiding its potential sub-class confusions. This is attained by splitting the clas-
sifier into two binary deep-learning classification models.

4 Methodology

Our research presents a cascade-like approach to classifying plant cell-types and
consists of two separate models, each for their own classification task of varying
complexity. Additionally to the cascade-like models, we then propose the effects
of inputting two image inputs to the machine learning model- the first being a
cropped image of either a vessel, fiber, or parenchyma, and the second being a
broader image that displays some context around that cropped image.

4.1 Data Augmentation and Pre-processing

To mitigate the minute number of cropped training images that we obtained,
some data augmentation was implemented to give our model more generalization.
By using a PyTorch transform, each cropped cell type image was augmented in
terms of a random rotation between 0 and 180◦ ten times.

Our data loading consists of a three step process of pre-processing the images.
The first step is to resize each cropped image to (224, 224) (width, height) pixels,
as the pre-trained ResNet-18 was trained on this image size on ImageNet [25].
Following, we normalize the features in each of the data sets by calculating the
mean and standard deviation for the data set as a whole and computing a z
score standardization for each image, ultimately modifying each image to have
roughly a mean of 0 and standard deviation of 1. Lastly, each pixel value in the
RGB channels are transformed into a range spanning from 0–1 by a division of
255 through a PyTorch Tensor.
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Fig. 3. Portrayal of our experiments of the advantages of an additional cropped image
input to potentially enhance classification results.

4.2 Cascading-Like Model

Due to the fact that a multi-class cell type classification assignment may be
harder for features to be classified, our group trained and optimized one model
on categorizing vessels vs other cell types, and the other on classifying fibers vs
parenchyma cells.

As depicted in Fig. 2, the intuition is to deliver a cropped cell image to two
potential classification models. First, the cropped cell image will be sent to the
a model that will classify it as a vessel or non-vessel. If the first model were to
classify that cropped image was a vessel, then the classification task would be
complete, however, in the case where the image is a non-vessel, then the second
model will classify that cropped image as a fiber or parenchyma.

4.3 Global Contextualization Approach

While local patches can capture detailed information about the texture of a cell,
it lacks the contextual information necessary to classify some cells. The reasoning
behind this approach is due to the potential similarity of fiber and parenchyma
cell class types when strictly cropped with little to no surrounding information,
particularly for fibers and axial parenchyma. However, when including a sec-
ondary image with surrounding information, we hypothesize a preferable more
concise model.

To achieve the contextualized photos, we took the image dimensions of each
cropped plant cell image and re-cropped a new globalized image that is 140 pixels
longer and taller than the original cropped image. As illustrated in Fig. 3, we
decided to extract the features of the original cropped image and the globalized
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cropped image separately in a chosen feature extraction model, then concatenate
the features in a wrapper class where those added features are fully connected
into a probability distribution of two classes.

Fig. 4. Depiction of the cell-type classification we hope to achieve with deep learning.

5 Experiments and Results

To fulfill our research goal, we trained one pipeline that consists of two binary
classification models that classifies one cropped plant cell type input, and a
second pipeline consisting of two binary classification models, that classifies two
image inputs as a plant cell type. For our baseline classification models, we appro-
priated three popular deep learning models: ResNet-18, VGG-16, and DeiT, as
feature extractors by freezing the weights previously trained on ImageNet, and
only training the fully connected layer [25–27].

For each model, our data was partitioned into three data sets. The training
data, which was permuted to choose two of the three plant species for training
and the third plant species as an external validation, was assigned an approx-
imate [90, 10] train-validation split after augmenting. This was done by imple-
menting a random number generator, where on the 1/10th probability scenario,
that image alongside its augmented counterparts would be sent to the valida-
tion data, which was subsequently used for hyper-parameter tuning. Figure 4
illustrates our end goal for classifying these xylem cell-types. We chose an ini-
tial learning rate of 0.1 and decreased it by a magnitude of 10 every n steps
depending on the sub-problem we were trying to solve.

5.1 Model Evaluation Metric

The accuracy of each of our models are evaluated based on the number of pre-
dictions the model gets correct on the external test set divided by the length of
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Table 1. These are the scores for each baseline pre-trained convolutional neural net-
works with the bare cropped image inputs, and the cropped image input with contextual
assistance.

Baseline models ResNet-18 VGG-16 DeiT

Vessel vs other cell types 96.7% 93.9% 97.1%

Vessel vs other cell types + large patches 98.1% 94.8% 98.1%

Fiber vs parenchyma 91.00% 76.4% 82.6%

Fiber vs parenchyma + large patches 91.7% 81.3% 86.8%

the test set. To find these predictions, we take the max of the probability dis-
tribution outputted by our machine learning model and count the overlapping
corrects with our ground truth labels. To determine the overall accuracy of a
cascade-like model, the average score of both sub-models are taken.

For our final models, we have decided to report results by a percentage of
accuracy on the CCR plant species as the external test with an error margin
calculated by the standard deviation of the CCR test accuracies, and the CO
and FCA accuracies. By doing so, we hope to have created classification models
that will yield similar test results within the error margin on other unseen species.

5.2 Baseline Results

To determine which pre-trained feature extractor to use, we trained both mod-
els without data augmentation on the three chosen neural networks (ResNet-18,
VGG-16, DeiT) to determine initial results. Our group decided that ResNet-
18 was the most accurate and efficient feature extractor for our research goals,
because without any augmentation, it is clear that ResNet-18 has the best per-
formance for all sub-problems. Additionally, the information shown in Table 1
starts to strengthens our claim of contextualized images providing classification
assistance, as marginal improvements are evident in the contextualized image
models.

5.3 Results

Our hypothesis of adding a contextualized image to the machine learning model
proved to be accurate. Table 2 shows that adding a global patch for vessel classi-
fication improved the vessel vs non-vessels by 5.7% correctly classifying 211/213
vessels, fiber vs parenchyma by 2.8%, and escalating the overall accuracy by
4.2%. As a justification for our cascade-like architecture, the total accuracy of a
trained and optimized multi-class classification model with data augmentation
and global patch input is also visualized to be evidently worse than both the
non-global patch and with global patch cascade-like models.
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Table 2. A comparison of the performance of ResNet-18 with augmented images and
global patches vs ResNet-18 with just data augmentation. Large patches are shown to
increase classification accuracy. A justification for our cascading-like model is supported
when compared with the multi-class classification results. Abbreviation Notes: (Ves,
Fib, Par, aug) = (Vessel, Fiber, Parenchyma, augmentation

Cascading model Ves. vs other Fib. vs par. Overall accuracy

Large patches + data aug. 99.1 ± 1.2% 97.2 ± 4.3% 98.1 ± 2.6%

Data aug. 93.4% 94.4% 93.9%

Non-cascading model Ves. vs other Fib. vs par. Overall accuracy

Large patches + data aug. x x 90.1%

Fig. 5. Representation of the cropped plant cell images that were misclassified by our
model

6 Discussion

In this study, we used a novel application of machine learning to classify plant cell
types in xylem tissue. We discovered that applying two cascading models (vessels
vs non-vessels and fibers vs parenchyma) achieved more accurate results than a
single model to classify the three cell types. Vessels have a more distinctive shape
compared to fibers and parenchyma, which likely explains why the accuracy
score in the first model is higher than in the second model comparing fibers and
parenchyma. We ran the cascading models three times and found some variation
depending on which two species were used for training and which one species
was used for testing the model. This likely reflects interspecific variation in cell
characteristics and the cell types present (e.g., the lack of tracheids in FCA) and
the challenge of fine-tuning a model that can be accurately applied to a broad
selection of species.
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Additionally, we discovered that incorporating the larger context (“patches”)
surrounding each plant cell improved the accuracy of our classification model.
The appearance and size of plant cells is naturally variable within cell types
(even within a single image), due to a variety of genetic, environmental, or
developmental factors. Thus, the context can greatly increase the confidence
in cell classification (e.g., vessels are larger than fibers). Also, some cell types
can be classified based on the pattern that they form within the tissue. For
example, parenchyma in xylem tissue form lines (“rays”) through the fibers and
vessels, as shown in Fig. 1. Future models may be able to incorporate contextual
information with even greater success.

Another challenge to our current framework is that some cells would overlap
with other cells in the cropped rectangular frame which may cause the machine
to analyze the undesired overlapping cell as part of the region of interest for
classification. When cropping parenchyma for instance, the parenchyma that is
directly next to it would sometimes appear in the cropped frame. As illustrated
in Fig. 5, our model misclassified some parenchyma, fibers, and vessels, whether
it be due to a lack of image quality, or similarity in features. In our future work,
we may try to implement a cropping technique that is similar to the magnetic
lasso tool that would crop the cell at its exact borders.

While promising, our current framework could be expanded and diversified.
For example, we could train and test this model using images from more species,
more developmental stages, and grown under a greater variety of environmental
conditions. While some cell characteristics are fairly conserved within a cell
type, there is an incredible amount of morphological diversity within and among
species. Future studies may determine whether our model can be broadly applied
across ecosystems, growth forms (e.g., woody vs non-woody tissue), and organs
(e.g., stem vs root).

Our cascading model framework could also be applied to classify a greater
number of cell types. For this study, we adopted a simplified classification system
for the three most abundant cell type classes (vessel, fiber, and parenchyma).
However, future models may further distinguish cell types, such as between ray vs
axial parenchyma, libriform vs gelatinous fibers, and vessels vs tracheids. A more
detailed model would also likely benefit from the cascading model framework and
contextual information.

7 Conclusion

Our study produced a novel approach to classifying plant cell types from light
micrographs with high accuracy. Our model may provide a foundation for future
models that are capable of detecting, classifying, and measuring plant cells from
unprocessed light micrographs. Our framework might also be applied to other
times of image datasets, such as micro-computed tomography. With the increas-
ing availability of large image datasets, such a model would greatly broaden the
utility of these resources for research teams that lack the manpower for manual
analysis.
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