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Abstract – We review the generalization of tunneling time and anomalous behaviour of Fara-
day and Kerr rotation angles in parity and time (PT )-symmetric systems. Similarities of two
phenomena are discussed, both exhibit a phase transition-like anomalous behaviour in a certain
range of model parameters. Anomalous behaviour of tunneling time and Faraday/Kerr angles
in PT -symmetric systems is caused by the motion of poles of scattering amplitudes in the en-
ergy/frequency complex plane.

perspective Copyright c© 2023 EPLA

Introduction. – During the past two decades, parity-
time (PT )-symmetric Hamiltonians are studied in various
areas of physics such as optics [1–5], quantum mechan-
ics [6–8], and classical wave systems [9,10]. For exam-
ple, in optics, PT -symmetric arrangements of gain and
loss media have been studied, where the gain balances the
loss, leading to interesting phenomena such as unidirec-
tional invisibility and anomalous point oscillations [11,12].
Note that although PT -symmetric systems have been ex-
tensively studied and have theoretical and experimental
support, their implementation in certain physical systems
can still be difficult. Nevertheless, they remain an ac-
tive research field with great potential for new discover-
ies and technical applications in optical isolators, sensors,
magnetic storage, magneto-optical modulators, magneto-
optical switches, and magneto-optical circulators.

In this letter, we present a brief review on i) the general-
ization of the concept of tunneling time in PT -symmetric
systems and ii) some anomalous behaviours of magneto-
optic effects in PT -symmetric systems. Both quantum
tunneling time and magneto-optic effects are the conse-
quence of propagation of either quantum wave or optical
wave through barriers, hence both phenomena are closely
related to the transmission and reflection amplitudes of

(a)E-mail: peng.guo@dsu.edu (corresponding author)

scattering of a quantum particle or light off barriers, and
can be described in a similar framework.

In standard (Hermitian) quantum mechanics, both tun-
neling time of a quantum particle and Faraday and Kerr
rotations of an electromagnetic wave through real poten-
tial barriers are not new subjects, and a wide variety of
theoretical and experimental work on both topics has been
carried out extensively in the past:

i) Tunneling time: Substantial research has been
conducted on the tunneling time problem, see, e.g.,
refs. [13–15] and references therein). This area of ex-
ploration is particularly focused on nanostructures and
mesoscopic systems with sizes smaller than 10 nm. In
such systems, the tunneling time assumes significance as
it becomes a key factor in determining various transport
properties. Notably, it plays a vital role in phenomena
such as the frequency-dependent conductivity response of
mesoscopic conductors [16] and the occurrence of adia-
batic charge transport [17,18]. More recently, another
kind of problems have arisen in ultrafast science or in at-
tosecond physics (e.g., the investigation of electron cor-
relation effects, photoemission delay, ionization tunneling,
etc.), where tunneling time experiments play an important
role as a unique and powerful tool that allows electronic
monitoring with subatomic resolution both in space and
time. The measurement of tunneling time in attosecond

66001-p1



Vladimir Gasparian et al.

experiments (attosecond = 10−18 s) offers a fruitful oppor-
tunity to understand the role of time in quantum mechan-
ics, which has been controversial since the appearance of
quantum mechanics, see, e.g., refs. [13,15,19].

ii) Magneto-optic effects: The development of electro-
magnetic theory and atomic physics has been largely influ-
enced by the study of the magneto-optic effects as Faraday
rotation (FR) and Kerr rotation (KR). In these magneto-
optical phenomena, an electromagnetic wave propagates
through a medium altered by the presence of an external
magnetic field. In such magneto-optical materials (also
referred as gyrotropic or gyromagnetic), left- and right-
rotating elliptical polarizations propagating at different
speeds result in a rotation of the planes of the transmit-
ted (FR) and reflected (KR) light. FR and KR effects
are essential for optical communication technologies [20],
optical amplifiers [4,21], and photonic crystals [22,23]. In
addition, the KR is also an extremely accurate and versa-
tile research tool and can be used to determine quantities,
such as anisotropy constants, exchange-coupling strengths
and Curie temperatures (see, e.g., [24]).

General theory of tunneling time and magneto-

optic effects in PT -symmetric systems. – A brief
summary of general theory of tunneling time and magneto-
optic effects in PT -symmetric systems is given in this sec-
tion, more details can be found in [25–28].

Tunneling time. The concept of tunneling or delay time
for a quantum particle tunneling through real potential
barriers is conventionally defined through the integrated
density of states, which is proportional to the imaginary
part of the full Green’s function of systems and positive
definite in a real potential scattering theory. Following the
definition in refs. [29–31], two components of the traversal
time τE can be introduced by (� = 1)

τE = τ2 + iτ1 = −
∫ Λ

2

− Λ
2

dx〈x|Ĝ(E)|x〉, (1)

where τ1 and τ2 represent Büttiker-Landauer tunneling
time and the Landauer resistance, respectively. The Λ
stands for the length of the potential barrier, and the
Ĝ(E) = 1

E−Ĥ
is the Green’s function operator of the sys-

tem. As shown in refs. [30,31], two components of the
traversal time τE are linked to the scattering and trans-
port amplitudes explicitly by

τ2 + iτ1 =
d ln[t(k)]

dE
+

r(l)(k) + r(r)(k)

4E
, (2)

where t(k) and r(l/r)(k) are the transmission and left/right
reflection amplitudes, respectively, and k =

√
2 mE is the

momentum of particle. The transmission and reflection
amplitudes can be obtained by finding scattering solutions
of the Schrödinger equation,

Ĥ |ΨE〉 = E|ΨE〉, Ĥ = − 1

2 m

d2

dx2
+ V (x), (3)

where m denotes the mass of the particle, and V (x) is the
interaction potential.

In the conventional real potential scattering theory, the
development of the concept of tunneling or delay time is
fundamentally based on counting the probability that a
particle spends inside of a barrier, see, e.g., refs. [32–34].
However, in complex potential scattering theory, the norm
of states is no longer conserved, the probability interpre-
tation of tunneling time becomes problematic. This can
be understood by examining the spectral representation of
Green’s function in a complex potential scattering theory,
which now depends on the eigenstates of both Ĥ and its
adjoint Ĥ†,

Ĝ(E) =
∑

i

|ΨEi〉〈Ψ̃Ei |
E − Ei

, (4)

where
Ĥ†|Ψ̃E〉 = E|Ψ̃E〉. (5)

In general the discontinuity of Green’s function crossing
the branch cut in the complex E-plane is a complex func-
tion. However, see ref. [25], it is real under PT sym-
metry and equal to the imaginary part of the Green’s
function, though it may not always be positive as a conse-
quence of the norm violation due to the complex potential.
Hence, the conventional definition of density of states gets
lost, and one should generalize and redefine correctly the
tunneling time. In this review letter the tunneling time
through PT -symmetric barriers is defined by eq. (1). The
generalized density of states in such a system is taken as
the imaginary part of Green’s function, and τ1 now may be
interpreted as a generalized Büttiker-Landauer tunneling
time. The sign of generalized tunneling time τ1 is directly
related to the potential barriers, that either tend to keep a
particle in or force it out. When τ1 is negative it behaves
similarly to a forbidden gap in a periodic system, being
unreachable.

Magneto-optic effects. We consider an incident lin-
early polarized electromagnetic plane wave with an
angular frequency ω entering the system from the left,
propagating along the x-direction. The electric field’s po-
larization direction of the incident wave is aligned with the
z-axis: E0(x) = ei ω

c

√
ǫ0xẑ, where ǫ0 denotes the dielectric

constant of vacuum. A magnetic field B is applied in the
x-direction, as depicted in fig. 1. The scattering of the EM
wave is described by, see, e.g., refs. [35,36],

[
d2

dx2
+

ω2ǫ±(x)

c2

]
E±(x) = 0, (6)

where E± = Ey ± iEz represents the circularly polarized
electric fields. The variable ǫ±(x) is defined as follows:

ǫ±(x) =

⎧
⎪⎨
⎪⎩

ǫ + V (x) ± g, if x ∈
[
−L

2
,
L

2

]
,

ǫ0, otherwise,

(7)

where L represents the length of the dielectric slab and ǫ
is the positive and real permittivity of the slab, see fig. 1.
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Fig. 1: Demo plot of a PT -symmetric dielectric slab model
with two balanced complex narrow slabs placed at both ends
of a real dielectric slab.

V (x) denotes the additional potential barriers that are
placed inside of the slab, which can be easily manipulated
and adjusted to implement the PT symmetry require-
ment. g is the gyrotropic vector along the magnetic-field
direction. The external magnetic field B is included into
the gyrotropic vector g to make the calculations valid for
the cases of both external magnetic fields and magneto-
optic materials. The magnetic field causes the direction of
linear polarization of both transmitted and reflected wave
to rotate. As a consequence, both the outgoing transmit-
ted and reflected waves exhibit elliptical polarization. The
major axis of the ellipse is rotated relatively to the original
polarization direction. The real part of the rotation angle
describes the change in polarization for linearly polarized
light, while the imaginary part indicates the ellipticity of
the transmitted or reflected light.

The complex rotational parameters characterizing the
transmitted light can be expressed in terms of transmis-
sion amplitudes by

θT
2 + iθT

1 =
1

2
ln

t+(ω)

t−(ω)
, (8)

where t± represent the transmission amplitudes of trans-
mitted electric fields. In the case of a weak magnetic field
(g ≪ 1), a perturbation expansion can be applied. The
leading-order contribution can be obtained by expanding
t± around the refractive index of the slab in the absence
of the magnetic field B:

θT
2 + iθT

1 =
g

2n

∂ ln[t(ω)]

∂n
, (9)

where n =
√

ǫ represents the refractive index of the slab.
Similarly, the leading-order expressions of complex angles
of the Kerr rotation, in the case of a weak magnetic field,
are given by

θR(l/r)

2 + iθR(l/r)

1 =
g

2n

∂ ln[r(l/r)(ω)]

∂n
, (10)

where r(l/r) is the left/right reflection amplitudes in the
absence of magnetic field B.

PT symmetry constraints on scattering amplitudes.
The PT symmetry can be implemented in quantum

tunneling time and magneto-optic effects by imposing
conditions on the interaction potential in the Schrödinger
equation and on dielectric permittivity in eq. (6):

V (x) = V ∗(−x). As discussed in ref. [25], the
parametrization of the scattering matrix only requires
three independent real functions in a PT -symmetric sys-
tem: one inelasticity, η ∈ [1, ∞], and two phase shifts, δ1,2.
In terms of η and δ1,2, the transmission and reflection am-
plitudes are given by

t = η
e2iδ1 + e2iδ2

2
,

r(r/l) = η
e2iδ1 − e2iδ2

2
± i

√
η2 − 1ei(δ1+δ2).

(11)

As the consequence of PT symmetry constraints, two com-
ponents of the traversal time are also given in terms of η
and δ1,2 by

τ1 =
d(δ1 + δ2)

dE
+ η

sin(2δ1) − sin(2δ2)

4E
,

τ2 =
d ln[η cos(δ1 − δ2)]

dE
+ η

cos2 δ1 − cos2 δ2

2E
.

(12)

Only three FR and KR angles are independent, the FR
and KR angles are given in terms of η and δ1,2 by

θT
1 =θR

1 =
g

2n

∂(δ1+δ2)

∂n
, θT

2 =
g

2n

∂ ln [η cos(δ1−δ2)]

∂n
,

θR(r/l)

2 =
g

2n

∂

∂n
ln|η sin(δ1 − δ2) ±

√
η2 − 1|. (13)

θR(r/l)

2 and θT
2 are related by θR(r)

2 +θR(l)

2 = 2T
T−1θT

2 , where

T = η2 cos2(δ1 − δ2) denotes the transmission coefficient.

A simple exact solvable PT -symmetric model.

– A simple PT -symmetric contact interaction potential
model is adopted in this letter to illustrate some usual
features in both tunneling time and magneto-optic effects
in PT -symmetric systems. The PT -symmetric interaction
potential for a single cell of the barrier is chosen as

V (x) = V δ

(
x +

L

2

)
+ V ∗δ

(
x − L

2

)
,

V = |V |eiϕV = V1 + iV2,

(14)

which represents two complex-conjugate impurities placed
inside of a single cell. One is absorbing with loss and
the other is emissive with an equal amount of gain. The
closed forms of scattering solutions can be obtained for
the contact interaction potential model:

i) Transmission and reflection amplitudes for a quantum
particle tunneling through a single cell of the barrier of
length Λ (Λ = L + L0) are given by

t0(k) =
csc(kL)eikL0

R(k) − iI(k)
, r

(l/r)
0 (k) = i

Q(l/r)(k)eikL0

R(k) − iI(k)
,

(15)
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Fig. 2: Schematic of a one-dimension multiple cells PT -
symmetric photonic heterostructure.

where L0 stands for the separation between two slabs, and

R(k) = cot(kL) + 2
m|V | cosϕV

k
,

I(k) = 1 − 2

(
m|V |

k

)2

− 2

(
m|V | cosϕV

k

)
cot(kL),

Q(l/r)(k) = −2
m|V |

k

[
cos(kL ∓ ϕV )

sin(kL)
+

m|V |
k

]
. (16)

ii) The transmission and reflection amplitudes in
eq. (15) also apply in the case of Faraday and Kerr ef-
fects for a single cell with slab of length Λ by replacing
k by ωn

c . The expression of functions R(ω), I(ω) and

Q(r/l)(ω) are given in eq. (15) and eq. (18) in ref. [28].

Periodic multiple cells PT -symmetric systems. It is
known that when the wave propagation through a medium
is described by a differential equation of second order,
the expression for the total transmission from the finite
periodic system for any waves (sound and electromag-
netic) depends on the unit cell transmission, the Bloch
phase and the total number of cells. The infinite peri-
odic PT -symmetric structures exhibit unusual properties,
including the band structure, Bloch oscillations, unidi-
rectional propagation and enhanced sensitivity, see, e.g.,
refs. [37–40] and references therein. However, the case of
scattering in a finite periodic system composed of an arbi-
trary number of cells/scatters has been less investigated,
despite the fact that any open quantum system gener-
ally consists of a finite system coupled with an infinite
environment. In Hermitian theory, the averaged physi-
cal observables of a finite system approach the limit that
depends on the crystal-momentum of an infinite periodic
system as the size of a finite system is increased. However,
in PT -symmetric systems, new challenges emerge, the
large size limit of a finite size system is only well-defined
conditionally.

The PT -periodic symmetric structure that consists of
2N +1 cells, see fig. 2, can be assembled on top of a single
cell. Following refs. [27,28,41], generic expressions for the
transmission and reflection amplitudes for 2N + 1 cells of
PT -periodic symmetric structure in both tunneling time
and magneto-optic effects cases can be presented as

t =
1

cos(β(2N + 1)Λ) + iIm[ 1
t0

] sin(β(2N+1)Λ)
sin(βΛ)

,

r(l/r)

t
=

r
(l/r)
0

t0

sin(β(2N + 1)Λ)

sin(βΛ)
. (17)

β plays the role of crystal-momentum for a periodic lattice
and is related to k or ω by

cos(βΛ) = Re

[
1

t0

]
. (18)

The factor sin(β(2N+1)Λ)
sin(βΛ) in both transmission and re-

flection amplitudes reflects the combined interference and
diffraction effects in finite periodic systems, which occur
naturally in Hermitian one-dimensional finite-size periodic
systems. It is interesting to see that eq. (17) holds up
for both Hermitian and PT -symmetric systems, which is
highly non-trivial since the usual probability conservation
property for Hermitian systems must be generalized in
PT -symmetric systems. As pointed out in ref. [27], the
scattering amplitudes for a periodic multiple cells system
can be related to single cell amplitudes in a compact fash-
ion. This is ultimately due to the factorization of dynamics
living in two distinct physical scales: short-range dynam-
ics in a single cell and long-range collective effects of the
periodic structure of the entire system. The short-range
interaction dynamics is described by single cell scatter-
ing amplitudes and β represents the long-range correla-
tion effect of the entire lattice system. The occurrence of
factorization of short-range dynamics and long-range col-
lective mode has been known in both condensed-matter
physics and nuclear/hadron physics. As examples, par-
ticles interacting with short-range potential in a peri-
odic box or trap, quantization conditions can be given
in a compact formula that is known as Korringa-Kohn-
Rostoker method [42,43] in condensed-matter physics,
Lüscher formula [44] in lattice quantum chromodynam-
ics and Busch-Englert-Rzażewski-Wilkens formula [45] in
the nuclear-physics community. Other related useful dis-
cussions can be found in, e.g., refs. [46–50].

Spectral singularities and their impact on tunneling
time and magneto-optic effects in PT -symmetric systems.

Two types of singularities are present in scattering
amplitudes: 1) a branch cut siting along the positive
real axis in complex k- or ω-plane that separates physi-
cal sheet (the first Riemann sheet) and unphysical sheet
(the second Riemann sheet); 2) poles of transmission and
reflection amplitudes. These poles are called spectral
singularities of a non-Hermitian Hamiltonian when they
show up on the real axis [51–53], which yields divergences
of reflection and transmission coefficients of scattered
states.

The motion of poles in complex k- or ω-plane, fig. 3,
has some profound impact on the value of τ1 in tunneling
time and Faraday and Kerr rotation angles θT

1 and θR
1 in

PT -symmetric systems. The location of these poles are
model parameters dependent and can be found by solving
1/t = 0. The normal or anomalous behaviours of τ1 and

θ
T/R
1 are determined by the location of poles: when the

poles are all located in an unphysical sheet (the second

Riemann sheet), τ1 and θ
T/R
1 remains positive. As poles

move close to and ultimately cross the real axis into the
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Fig. 3: The motion of poles in the complex k/m-plane as a
function of increasing ϕV for tunneling time of a single cell de-
fined in eq. (15) and eq. (16). The arrows indicate increasing
ϕV directions. The ϕV values of spectral singularities are in-
dicated by ϕc’s. The model parameters are taken as |V | = 4
and mL = 1.

physical sheet (the first Riemann sheet), the poles generate

an enhancement in τ1 and θ
T/R
1 near the location of the

poles. The spectral singularities occur when the poles are
located on the real axis, the transmission and reflection
amplitudes diverge at the location of the poles. This can
be easily understood with the motion of a single pole. Near
the pole, the transmission amplitude is approximated by

t(k) ∝ 1

k − kpole
=

k − kre − iγ

(k − kre)2 + γ2
, (19)

where kpole = kre + iγ, being kre and γ the real and imag-
inary parts of pole position. The location of the pole in
the physical sheet or unphysical sheet is determined by
the sign of γ: unphysical sheet if γ < 0 and physical sheet
if γ > 0. The tunneling time τ1 or Faraday/Kerr rotation

angle θ
T/R
1 near the pole is thus dominated by

τ1 ∼ m

k

γ

(k − kre)2 + γ2
, (20)

hence as the pole moves across the real axis into the phys-
ical sheet, γ changes its sign.

The locations of the moving poles are controlled by
model parameters. The spectral singularities only occur in
a certain range of model parameters, the boundary of the
range of the model parameters hence separates the normal
behaviour of the tunneling time and Faraday/Kerr rota-

tion angles where τ1 and θ
T/R
1 always remain positive from

anomalous behaviours where τ1 and θ
T/R
1 may turn nega-

tive near location of the spectral singularities. When the
model parameters are varied continuously, the tunneling
time and Faraday/Kerr rotation angles in PT -symmetric
systems hence experience a phase-transition–like transfor-
mation. Using the expressions in eq. (15) and eq. (16) as
a simple example, the conditions for spectral singularities
are given by considering 1/t0(k) = 0:

(
−cot(kL)| sin(kL)|√

2
,

k/m√
2| sin(kL)|

)
= (cosϕV , |V |).

(21)

Fig. 4: Spectral singularities condition plot: the parametric
plot of the solid red curve is generated with (x, y) coordinates
given by the left-hand side of eq. (21) as a function of k/m.
The solid red curve is bound by two blue vertical lines located
at x = ± 1

√

2
. The purple line is generated with coordinates

(cosϕV , |V |) by varying ϕV in the range [0, π]. The arrows in-
dicate increasing k/m directions. The spectral singularities for
fixed m|V | are given by the intersection of the purple line and
the red curve. The model parameters are chosen as |V | = 4,
and mL = 1.

The solutions of the spectral singularities can be visual-
ized graphically by observing the intersection of a curve
and a line with (x, y) coordinates given by both sides of
eq. (21) for a fixed |V |, see fig. 4 as an example. For a fixed
|V | = 4, the solutions of the spectral singularities can only
be found in a finite range, ϕV ∈ [0.4π, 0.67π], in which the
poles appear in the physical sheet, anomalous behaviour
of tunneling time and Faraday/Kerr rotation angles occur

and τ1 and θ
T/R
1 may turn negative. For a fixed |V | = 4,

only a single pole solution can be found in the complex
k-plane, the motion of pole as ϕV is increased is illustrated
in fig. 3.

For a large-N system, the situation is even more inter-
esting, the band structure and EPs start getting involved,
competing with poles and playing the roles in turning τ1

and θ
T/R
1 , see detailed discussion in ref. [27]. The band

structure of the system is clearly visible for even small-
size systems. The number of poles grows drastically with
size, and the distribution of poles splits into bands. When
the poles show up inside an allowed band of the system
and all move across the real axis, they tend to flip the
sign of the entire band. In some bands where two bands
start merging together at an exceptional point, the excep-

tional points tend to force τ1 and θ
T/R
1 approaching zero

and start to competing with poles, so the PT -symmetric
systems become almost transparent near EPs. The fate of

τ1 and θ
T/R
1 near EPs now is the result of two competing

forces: the poles and EPs.

Large-N limit. As the number of cells is increased, all
traversal time τ1,2 and FR and KR angles demonstrate
fast oscillating behaviour due to sin(β(2N + 1)Λ) and
cos(β(2N + 1)Λ) functions in transmission and reflection
amplitudes. For the large-N systems, we can introduce

66001-p5



Vladimir Gasparian et al.

Fig. 5: (a) and (c): comparison of k

m
τ̂1 (solid black line) together with k

m

dRe[Q]
dE

(solid purple/light grey line) in the unbroken and
broken PT -symmetric phase. (b) and (d): the corresponding band structure plot in the unbroken and broken PT -symmetric
phase. The rest of the parameters are taken as mL = 1 and ma = 0.2, where |V | is dimensionless.

the traversal time per unit cell and FR and KR angles per
unit cell, such as

τ̂1,2 =
τ1,2

(2N + 1)Λ
. (22)

The N → ∞ limit may be approached by adding a small
imaginary part to β: β → β + iǫ, where ǫ ≫ 1

(2N+1)Λ . As

discussed in ref. [27], adding a small imaginary part to β
is justified by considering the averaged FR and KR angles
per unit cell, which ultimately smooth out the fast oscil-
lating behaviour of τ1,2 and FR and KR angles. Therefore,
as N → ∞, the two components of traversal time per unit
cell approach

τ̂1 − iτ̂2
N→∞→ dβ

dE
, (23)

and FR and KR angles per unit cell approach

θ̂T
1 − iθ̂T

2
N→∞→ g

2n

∂β

∂n
, θ̂R(r/l)

2
N→∞→ 0. (24)

The examples of tunneling time per unit cell for a PT -
symmetric finite system with five cells are shown in fig. 5,
compared with the large-N limit results. As we can see in
fig. 5, τ1 oscillates around the large-N limit results. Even
for the small-size system, we can see clearly that the band
structure of infinite periodic system is already showing
up. In the broken PT -symmetric phase in fig. 5, EPs
can be visualized even for a small-size system, where two
neighbouring bands merge and the PT becomes totally
transparent: τ1 approaches zero. FR/KR angles show a
similar behaviour, see, e.g., fig. 4 and fig. 5 in ref. [28].

The limiting cases in eq. (23) and eq. (24) work well
and are mathematically well defined in bands where spec-
tral singularities are absent on the real axis, the poles are
all either in the physical sheet or already all crossed real
axis into the unphysical sheet. The large-N limit is well
defined and can be achieved by either averaging fast oscil-
lating behaviour of τE or using iǫ-prescription by shifting
k off the real axis into the complex plane. However, in the
bands where the divergent singularities show up on the
real axis and the band is still in the middle of the transi-
tion between all positive and all negative bands of τ1 and

θ
T/R
1 , see, e.g., fig. 8 in ref. [27], eq. (23) and eq. (24)

break down, and the large-N limit becomes ambiguous
and problematic. The question of how to define a physi-
cally meaningful large-N limit in the presence of spectral
singularities is still open.

Summary. – We give a brief review on the recent
development of the generalization of tunneling time and
anomalous behaviour of the Faraday and Kerr rotation
angles in PT -symmetric systems. Both phenomena are
closely related to each other, associated with a general-
ized density of states and exhibit a phase-transition–like
anomalous behaviour in a certain range of model param-
eters. The anomalous behaviour of tunneling time and
Faraday/Kerr angles in PT -symmetric systems is directly
related to the motion of poles of scattering amplitudes in
the energy/frequency complex plane. When poles show
up in physical sheets, the value of the tunneling time

τ1 and Faraday and Kerr rotation angles θ
T/R
1 may turn
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negative, which may be considered as an anomalous phase
of PT -symmetric systems. On the contrary, when all
poles remain in the unphysical sheet, the tunneling time
and Faraday/Kerr angles of PT -symmetric systems be-
have just as normal Hermitian systems, which may be

considered as normal phase of systems. Both τ1 and θ
T/R
1

exhibit a strong enhancement when the poles move close
to the real axis where spectral singularities occur.
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Soljačić M., Nature, 461 (2009) 772.
[24] McGee N. W. E., Johnson M. T., de Vries J. J. and

aan de Stegge J., J. Appl. Phys., 73 (1993) 3418.
[25] Guo P. and Gasparian V., Phys. Rev. Res., 4 (2022)

023083.
[26] Gasparian V., Guo P. and Jódar E., Phys. Lett. A,

453 (2022) 128473.
[27] Guo P., Gasparian V., Jódar E. and Wisehart C.,
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