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In present work, a relation that connects the integrated correlation function of a trapped two-particle
system to infinite volume particles scattering phase shift is derived. It has the potential to provide an
alternative approach for extracting two-particle scattering phase shift from integrated correlation function in
lattice simulation at small Euclidean time region. Both (i) perturbation calculation of (1þ 1)-dimensional
lattice Euclidean field theory model of fermions interacting with a contact interaction and (ii) Monte Carlo
simulation of a 1D exactly solvable quantum mechanics model are carried out to test the proposed relation.
In contrast to conventional two-step approach of extracting energy levels from temporal correlation function
in lattice simulation at large Euclidean time first and then applying Lüscher formula to convert energy levels
into scattering phase shifts, we show that the difference of integrated correlation functions between
interacting and noninteracting trapped systems converges rapidly to infinite volume limit that is given in
terms of scattering phase shifts at small Euclidean time region.
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I. INTRODUCTION

Study of hadron/nuclear particles interactions and proper-
ties of few-body resonances from the first principles,
quantum chromodynamics (QCD) that is the underlying
theory of quark and gluon interactions, is one of the major
tasks in modern hadron/nuclear physics. In particular
hadron/nuclear particles provide the only means of under-
standing the quark and gluon dynamics. However, extracting
information of hadron/nuclear particle interactions from the
first principles, such as scattering phase shifts, is not always
straightforward. Usually theoretical computations are per-
formed in various traps, for instance, periodic cubic box in
lattice quantum chromodynamics (LQCD) and harmonic
oscillator trap in nuclear physics. As the result of trapped
systems, the energy spectra become discrete. To extract the
scattering information, normally the two-step procedures are
carried out: (1) First of all, discrete low-lying few-body
energy levels are extracted by fitting exponential decaying
behavior of correlation functions in Euclidean space-time,
and looking for the plateau in temporal correlation functions
when Euclidean time is large enough so that all excited

energy levels decay off rapidly and only lowest energy
level becomes dominant. The energy spectra of excited
states can be extracted in a similar way by applying
variational approach and generalized eigenvalue method
[1–3]; (2) Applying the Lüscher formula [4] in LCQD or
Busch-Englert-Rzażewski-Wilkens (BERW) formula [5]
in a harmonic oscillator (h.o.) trap in nuclear physics, the
discrete energy spectra of trapped system can be converted
into scattering phase shifts, etc. The Lüscher formula and
BERW formula have been quickly extended to include
inelastic effects, such as coupled-channel effect and three-
body problems, etc.; see, e.g., Refs. [6–45]. This two-step
approach has been proven very successful in number of
applications especially in meson sector; see, e.g.,
Refs. [29,46–57]. However, the two-step approach also
display some disadvantages that are summarized nicely in
Ref. [58] such as the determination of energy levels in
large spatial volume becomes difficult, etc. The situation
is even more challenging in the baryon sector, finding a
clear signal of a stable plateau in nucleon-nucleon reaction
correlation functions and pulling out energy spectra from
the noisy lattice simulation data is already a difficult task.
Therefore, there have been a number of proposals to
explore alternative approaches in recent years, such as
determining scattering amplitudes from finite-volume
spectral functions in Ref. [58] and extraction of spectral
densities from lattice correlators in Refs. [59,60], etc.
In this work, we will establish a connection between

integrated correlation functions and scattering phase shift
that has the potential to provide an alternative approach of
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extracting scattering phase shifts from lattice QCD calcu-
lation and show the following:

(i) The difference of integrated trapped two-particle
correlation functions between interacting particles
system and free particles system in 1þ 1 space-time
dimensions is related to infinite volume particles
scattering phase shift, δðϵÞ, by

CðtÞ−C0ðtÞ →
trap→∞

t¼−iτ

1

π

Z
∞

0

dϵ
dδðϵÞ
dϵ

e−ϵτ þ δð0Þ
π

; ð1Þ

where CðtÞ and C0ðtÞ are integrated correlation
functions for two interacting and noninteracting
particles in a trap, respectively, and τ stands for
Euclidean time.

(ii) Integrated trapped correlation functions are given in
terms of eigenenergies of two particles by

CðtÞ − C0ðtÞ ¼t¼−iτX
n

½e−ϵnτ − e−ϵ
ð0Þ
n τ�; ð2Þ

where ϵn and ϵ
ð0Þ
n are eigenenergies of two interacting

and noninteracting particles in a trap, respectively.
Hence integrated trapped correlation functions re-
semble the partition function in statistical mechanics,

CðtÞ − C0ðtÞ↔
τ↔β

Tr½e−βĤ − e−βĤ0 �; ð3Þ

with τ playing the role of β ¼ 1
kBT

. Ĥ and Ĥ0 are
interacting and noninteracting particles Hamiltonian
operators respectively. The relation given in Eq. (1)
therefore is analogous to the well-known result in the
calculation of the second virial coefficient of quan-
tum gas by a virial expansion approach (also known
as cluster expansion method) in quantum statistical
mechanics, see, e.g., Refs. [61,62].

(iii) As discussed in Ref. [62], at high temperature, the
scattering cross section is of the order the square of
the thermal de Broglie wavelength, which becomes
much smaller than the average interparticle distance
in quantum gas systems, hence the inclusion of only
few-body correlations in quantum virial expansion
has proven already sufficient at high temperature
(small β) in describing and understanding properties
of quantum gas systems. In a similar situation, two
distinct physical scales in integrated trapped corre-
lation functions are (1) the Euclidean evolving time τ
that plays the role of square of the thermal de Broglie
wavelength and (2) the size of trap, L. When τ is
much smaller than L, the difference of integrated
trapped two-particle correlation functions can be
described by series expansion in terms of powers
of τ=L, we may expect that the difference of
integrated trapped two-particle correlation functions

rapidly approaches the infinite volume limit that is
given in terms of scattering phase shifts in Eq. (1) at
small τ region even with a modest size of trap. This
conclusion as matter of fact can be easily illustrated
by using relation listed in Eq. (3), near small τ ∼ 0,
by Taylor expansion

e−Ĥτ ∼ ð1 − V̂τ þ � � �Þe−Ĥ0τ;

where V̂ ¼ Ĥ − Ĥ0 stands for interaction operator,
we can show that

CðtÞ − C0ðtÞ ∼τ∼0 − hV̂ðτÞiτ þOðhV̂ðτÞi2τ2Þ; ð4Þ

where hV̂ðτÞi ¼ Tr½V̂e−Ĥ0τ� may be interpreted as
thermal average of particles interaction that is propor-
tional to the inverse size of trap: hV̂ðτÞi ∝ 1

L. There-
fore, as τ=L ≪ 1, a thermal de Broglie wavelength is
much smaller than the size of a trap, particles
becomes less aware of the finite size of a trap,
and the difference of integrated trapped two-particle
correlation functions agree well with the infinite
volume limit result even with finite size of a trap.
This observation is further illustrated analytically in
great details by perturbation calculation of two-
fermion correlation function of a simple lattice field
theory model in Sec. IV.

(iv) Another one of our primary goals in this work is thus
first to illustrate numerically that two sides in Eq. (1)
indeed display a rather good agreement at small τ
region even with a modest size of the trap, as the size
of trap is increased, the agreement then starts expand
into larger τ region, and second to establish the
possibility of extracting the infinite volume particles
scattering phase from Monte Carlo calculation of
integrated correlation functions of trapped two-
particle system at small τ region. The Monte Carlo
simulation test of a quantum mechanical model with
a spinless particle interacting with a square well
potential in a harmonic trap is carried out in this
work in Sec. V. Monte Carlo data indeed show a
good agreement with infinite volume limit near
small τ region, and the range of agreement in τ
start expanding as the size of trap is increased.

We remark that, at the current scope, all our discussions
are only limited to nonrelativistic dynamics in one spatial
and one temporal dimensional space-time, and a lot of more
studies must to be conducted to include relativistic dynam-
ics and inelastic effect, etc. before it can be applied to
realistic cases in lattice QCD calculation.
The paper is organized as follows. First of all, a field

theory model for the study of nonrelativistic fermions
interaction in a trap is set up in Sec. II, the dynamics of
two fermions interaction in a trap and the two-particle
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correlation function are also presented in Sec. II. The
derivation of the infinite volume limit of integrated two-
particle correlation function, and its relation to particles
scattering phase shift are given in Sec. III. The perturbation
calculation of two fermions correlation function of a lattice
field theory is carried out and presented in Sec. IV. The
1þ 1D Monte Carlo simulation test with a exact solvable
quantum mechanics model is presented and discussed in
Sec. V. The discussions and summary are given in Sec. VI.

II. A FIELD THEORY MODEL
FOR NONRELATIVISTIC FERMIONS

INTERACTION IN A TRAP

In this section, we first setup a (1þ 1)-dimensional field
theory model for the study of two nonrelativistic fermions
interaction in a trap. All the conventions are established in
Sec. II A, the dynamical equations of two particles inter-
action are presented in Sec. II B, and the definition of time
forward propagating two-particle correlation function is
given in Sec. II C.

A. A field theory model setup

To restrain our current discussion in the case of single
species nonrelativistic particles interaction, a simple
(1þ 1)- dimensional nonrelativistic field theory model of
spin-1=2 fermions interaction via a short-range potential in
a trap is adopted in this work. Hamiltonian operator of the
trapped fermions system is

Ĥ ¼
X
σ¼↑;↓

Z
dxψ̂†

σðxÞ
�
−

1

2m
d2

dx2
þ UðxÞ

�
ψ̂σðxÞ

þ 1

2

Z
dxdyψ̂†

↑ðxÞψ̂†
↓ðyÞVðx − yÞψ̂↓ðyÞψ̂↑ðxÞ; ð5Þ

where σ ¼ ↑;↓ and m refer to the fermion polarizations
and mass, respectively, and ψ̂σðxÞ stands for the fermion
field operator. The trap potential and short-range interaction
potential between two fermions with opposite polarizations
are represented by UðxÞ and Vðx − yÞ, respectively. Only
spatially symmetric short-range interaction is considered in
this work:

Vðx − yÞ ¼ Vðy − xÞ;

hence, the interaction between two fermions with the same
polarizations is suppressed by Pauli exclusive principle.
The second quantization representation of Hamiltonian

operator can be obtained by using the following relations:

ψ̂σðxÞ ¼
X
n

φnðxÞan;σ; ψ̂†
σðxÞ ¼

X
n

φ�
nðxÞa†n;σ; ð6Þ

where an;σ and a†n;σ are the annihilation and creation
operators for a single fermion state that is labeled by

quantum numbers of ðn; σÞ. The expansion coefficient,
φnðxÞ, is the eigen wave function of single particle state in

the trap corresponding to the eigenenergy of ϵð0Þn , and it
satisfies a Hartree-Fock-like equation, see, e.g., Ref. [63],

�
−

1

2m
d2

dx2
þ UðxÞ

�
φnðxÞ ¼ ϵð0Þn φnðxÞ: ð7Þ

The second quantization representation of Hamiltonian of
trapped fermions system is thus given by

Ĥ ¼
X
σ;n

ϵð0Þn a†σ;naσ;n

þ 1

2

X
n1;n2;n01;n

0
2

Vn0
1
;n0

2
;n1;n2a

†
↑;n1

a†↓;n2a↓;n02a↑;n01 ; ð8Þ

where

Vn0
1
;n0

2
;n1;n2 ¼

Z
dxdyφ�

n0
1
ðxÞφ�

n0
2
ðyÞVðx − yÞφn1ðxÞφn2ðyÞ:

ð9Þ

B. Two fermions interaction in a trap

The two-particle state is defined in this subsection and
dynamical equation of trapped two interacting fermions
system is also presented. We remark that the subscript of
spatial integration of a trapped system,

R
trap dx, is sup-

pressed in follows: the spatial integration of a trapped
system for a periodic box and harmonic oscillator trap is
understood as

Z
dx ¼

(R
L
0 dx; for a periodic box of sizeLR∞
−∞ dx; for a h:o: trap

: ð10Þ

1. Spin singlet state of two fermions in a trap

The state of two fermions with a total spin-S
and interacting with a short-range potential in a trap is
defined by

jEi ¼
X
σ1;σ2

Z
dx1dx2ΨEðx1; x2ÞχðSÞσ1;σ2

ψ̂†
σ1ðx1Þψ̂†

σ2ðx2Þffiffiffi
2

p j0i;

ð11Þ

where ΨEðx1; x2Þ and χðSÞσ1;σ2 are spatial and spin wave
functions of two fermions system with total spin-S, respec-
tively. The factor 1=

ffiffiffi
2

p
takes into account the exchange

symmetry of two distinguishable fermions. For spatially
symmetric short-range interaction potentials, such as a
contact interaction, the antisymmetric spatial wave function
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is highly suppressed. Hence only spin single state with total
spin-(S ¼ 0) is considered in the current work,

χðS¼0Þ
σ1;σ2 ¼ 1ffiffiffi

2
p ðδσ1;↑δσ2;↓ − δσ1;↓δσ2;↑Þ; ð12Þ

and spatial wave function is symmetric under exchange of
coordinates of two particles,

ΨEðx1; x2Þ ¼ ΨEðx2; x1Þ: ð13Þ

The second quantization representation of two-fermion state
is given by

jEi ¼ 1

2

X
n1;n2

Ψ̃Eðn1; n2Þða†↑;n1a
†
↓;n2

− a†↓;n1a
†
↑;n2

Þj0i; ð14Þ

where

Ψ̃Eðn1; n2Þ ¼
Z

dx1dx2ΨEðx1; x2Þφ�
n1ðx1Þφ�

n2ðx2Þ; ð15Þ

and it is symmetric under exchange of two-particle state
indices,

Ψ̃Eðn1; n2Þ ¼ Ψ̃Eðn2; n1Þ: ð16Þ

In the basis of single particle wave functions, the two-
fermion spatial wave function is thus given by

ΨEðx1; x2Þ ¼
X
n1;n2

Ψ̃Eðn1; n2Þφn1ðx1Þφn2ðx2Þ: ð17Þ

The orthogonality of two-fermion states,

hEjE0i ¼ δE;E0

yields that the spatial wave functions are orthonormal andX
n1;n2

Ψ̃�
E0 ðn1; n2ÞΨ̃Eðn1; n2Þ ¼ δE;E0 : ð18Þ

We remark that our current discussion is restricted to
only a two-particle elastic region, so that the Fock space
expansion in Eqs. (11) and (14) is only limited to a two-
particle state contribution, the multiparticle states with a
number of particles equal or greater than 3 are all neglected
for now.

2. Dynamical equation of trapped two-fermion system

The effective dynamical equation for two-particle state
can be derived from the variational principle by evaluating

∂

∂Ψ�
E0 ðx1; x2Þ

hE0jĤ − EjEi ¼ 0: ð19Þ

With the help of relation in Eq. (17), we find that

ĤeffΨEðx1; x2Þ ¼ EΨEðx1; x2Þ; ð20Þ

where the effective two-particle Hamiltonian is given by the
sum of kinetic terms of particle in the trap and interaction
potential between two particles:

Ĥeff ¼ Ĥtrap þ Vðx1 − x2Þ; ð21Þ

where

Ĥtrap ¼ −
1

2m
d2

dx21
þUðx1Þ −

1

2m
d2

dx22
þUðx2Þ: ð22Þ

In the basis of single particle wave functions, the eigene-
nergy and eigenstate can be solved by diagonalizing the
matrix element of an effective two-particle Hamiltonian,

½Ĥeff �n1;n2;n01;n02 ¼δn0
1
;n1δn02;n2ðϵ

ð0Þ
n1 þϵð0Þn2 ÞþVn1;n2;n01;n

0
2
: ð23Þ

3. Separation of center of mass and relative motions

The c.m. motion can be separated out rather straight-
forwardly for some commonly used traps, such as periodic
box in lattice QCD, harmonic oscillator trap in nuclear
physics, etc.

Ĥtrap ¼ −
1

2M
d2

dR2
þ Uc:m:ðRÞ −

1

2μ

d2

dr2
þ UrelðrÞ; ð24Þ

where

M ¼ 2m and μ ¼ m
2

are the total mass and reduced mass of two-particle system,
respectively, and

R ¼ x1 þ x2
2

and r ¼ x1 − x2

are center of mass and relative coordinates of two particles,
respectively. The Uc:m:ðRÞ and UrelðrÞ represent the trap
potentials for center of mass and relative motions, respec-
tively. As a specific example, the harmonic oscillator trap
potential for an individual particle is

UðxÞ ¼ 1

2
mω2x2; ð25Þ

where ω is angular frequency of harmonic oscillator. The
trap potentials for center of mass and relative motions have
the similar forms but the mass of particle, m, must be
replaced by total mass and reduced mass, respectively,
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Uc:m:ðRÞ ¼
1

2
Mω2R2; UrelðrÞ ¼

1

2
μω2r2: ð26Þ

The total wave function is thus the product of center of
mass wave function and relative wave function,

ΨEðx1; x2Þ ¼ ψ ðc:m:Þ
Ec:m:

ðRÞψ ðrelÞ
ϵ ðrÞ; E ¼ Ec:m: þ ϵ; ð27Þ

they satisfy Schrödinger equations:

�
−

1

2M
d2

dR2
þUc:m:ðRÞ

�
ψ ðc:m:Þ
Ec:m:

ðRÞ¼Ec:mψ
ðc:m:Þ
Ec:m:

ðRÞ; ð28Þ

and

�
−

1

2μ

d2

dr2
þ UrelðrÞ þ VðrÞ

�
ψ ðrelÞ
ϵ ðrÞ ¼ ϵψ ðrelÞ

ϵ ðrÞ: ð29Þ

C. Two fermions correlation function

In lattice QCD, particles interaction are usually studied
via evaluating time dependence of correlation functions
numerically from the first principle. To illustrate how the
two-particle correlation function is related to a particle
scattering phase shift, first we define the forward time
propagating two-particle correlation function by

Cðrt; r00Þjt>0 ¼ θðtÞh0jÔHðr; tÞÔ†
Hðr0; 0Þj0i: ð30Þ

The two-particle creation operator in Heisenberg picture is
given by

Ô†
Hðr; tÞ ¼ eiĤtÔ†ðrÞe−iĤt; ð31Þ

where

Ô†ðrÞ ¼
Z

dRψ ðc:m:Þ
Ec:m:

ðRÞ ψ̂
†
↑ðx1Þψ̂†

↓ðx2Þ − ψ̂†
↓ðx1Þψ̂†

↑ðx2Þ
2

;

ð32Þ

and c.m. motion has been projected out in definition of
Ô†ðrÞ operator.
Inserting complete energy basis in between two-particle

annihilation and creation operators,

X
E

jEihEj ¼ 1;

and also using Eq. (11), it is straightforward to show that

hEjÔ†ðrÞj0i ¼ ψ ðrelÞ�
ϵ ðrÞ: ð33Þ

We thus find

Cðrt; r00Þjt>0 ¼ e−iEc:m:tCðrelÞðrt; r00Þjt>0; ð34Þ

where the correlation function for the relative motion of
two-particle system is given by

CðrelÞðrt; r00Þjt>0 ¼ θðtÞ
X
ϵ

e−iϵtψ ðrelÞ
ϵ ðrÞψ ðrelÞ�

ϵ ðr0Þ: ð35Þ

Using identity

i
Z

∞

−∞

dE
2π

e−iEt

Eþ i0
¼ θðtÞ; ð36Þ

the two-particle correlation function can also be written as

CðrelÞðrt; r00Þjt>0 ¼ i
Z

∞

−∞

dλ
2π

X
ϵ

ψ ðrelÞ
ϵ ðrÞψ ðrelÞ�

ϵ ðr0Þ
λ − ϵþ i0

e−iλt:

ð37Þ

Hence the two-particle correlation function is related to
Green’s function of two-particle interaction in a trap by

CðrelÞðrt;r00Þjt>0 ¼ i
Z

∞

−∞

dλ
2π

GðtrapÞðr;r0;λþ i0Þe−iλt; ð38Þ

where the spectral representation of two-particle Green’s
function is given by

GðtrapÞðr; r0; λÞ ¼
X
ϵ

ψ ðrelÞ
ϵ ðrÞψ ðrelÞ�

ϵ ðr0Þ
λ − ϵ

; ð39Þ

and it satisfies the differential equation

�
ϵþ 1

2μ

d2

dr2
−UrelðrÞ − VðrÞ

�
GðtrapÞðr; r0; ϵÞ ¼ δðr − r0Þ:

ð40Þ
III. INTEGRATED TWO-PARTICLE

CORRELATION FUNCTION AND ITS RELATION
TO SCATTERING PHASE SHIFT

The detailed derivation of how an integrated two-particle
correlation function is related to scattering phase shift are
presented in Sec. III B, we show that the infinite volume
limit of difference of integrated correlation functions
between two interacting and noninteracting particles in
the trap approaches

1

π

Z
∞

0

dϵ
dδðϵÞ
dϵ

e−iϵt þ δð0Þ
π

;

where δðϵÞ is a two-particle scattering phase shift in infinite
volume. The relation is then illustrated by using an exactly
solvable contact interaction model in both periodic box and
harmonic oscillator trap in Sec. III C.
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A. Integrated two-particle correlation function

Using orthogonality of two-particle wave function, the
integrated two-particle correlation function is related to
energy spectra simply by

CðrelÞðtÞjt>0 ¼
Z

drCðrelÞðrt; r0Þjt>0 ¼ θðtÞ
X
ϵ

e−iϵt: ð41Þ

Using Eq. (38), the integrated two-particle correlation
function is therefore also given by

CðrelÞðtÞjt>0 ¼ i
Z

∞

−∞

dλ
2π

Tr½GðtrapÞðλþ i0Þ�e−iλt; ð42Þ

where the trace of Green’s function is defined by

Tr½GðtrapÞðλÞ� ¼
Z

drGðtrapÞðr; r; λÞ: ð43Þ

B. Relating integrated correlation function
to scattering phase shift

1. Quantization condition of energy spectra in a trap and
infinite volume limit of integrated correlation function

With a short-range interaction, the quantization condi-
tion (QC) that determines discrete energy spectra of the
trapped two-particle system can be formulated in a compact
form, for instance, Lüscher formula [4] in a periodic cubic
box in LCQD and BERW formula [5] in a harmonic
oscillator trap in nuclear physics,

det ½cot δðϵÞ −MðϵÞ� ¼ 0; ð44Þ

where δðϵÞ refers to the diagonal matrix of scattering partial
wave phase shifts, and the matrix function MðϵÞ is
associated to the geometry and dynamics of trap itself.
Lüscher and BERW formula both are the result of presence
of two well separated physical scales: (1) short-range
interaction between two particles and (2) size of trap.
Therefore the short-range dynamics that is described by
scattering phase shift and long-range correlation effect due
to the trap can be factorized, also see recent developments
and extension of Lüscher and BERW formalism beyond
two-particle sector and elastic region, Refs. [6–45].
For a particular partial wave state, Eq. (44) can be

rearranged to

δlðϵÞ þ ϕlðϵÞ ¼ nπ; n∈Z; ð45Þ

where l stands for the angular momentum of system. The
expression of ϕlðϵÞ is associated to matrix elements of
MðϵÞ and may depends on other partial wave phase shifts
as well. For example, in BERW formula with a harmonic
oscillator trap, see, e.g., Refs. [5,35], the rotational

symmetry is well preserved, so ½MðϵÞ�l;l0 ¼ δl;l0MlðϵÞ,
and ϕlðϵÞ ¼ −cot−1½MlðϵÞ� is totally determined by the
diagonal element of aMðϵÞ matrix. However in a periodic
cubic box, see, e.g., Refs. [4,35], the rotational symmetry
is broken and angular orbital momenta are no longer good
quantum numbers; henceMðϵÞ in general is not a diagonal
matrix. ϕlðϵÞ now not only depends on the matrix element
of MðϵÞ, but it also depends on other partial wave phase
shifts as well.
In one-dimensional space, partial wave angular momen-

tum states are replaced by the parity states. In our case, for
spin singlet two-fermion states, only even parity state
contributes, so from this point on, the subscript-l in
Eq. (45) will be dropped, the quantization condition is
simply written as

δðϵnÞ þ ϕðϵnÞ ¼ nπ; ð46Þ

where subscript-n in ϵn is used to label the nth eigenenergy
of system. The analytic expression of ϕðϵÞ for a periodic
box and h.o. trap are given in Appendix A, respectively, by

ϕðϵÞ ¼
8<
:

ffiffiffiffiffiffiffiffi
2μϵ

p L
2
; for a periodic box

−cot−1
h ffiffiffiffi

ϵ
2ω

p Γð1
4
− ϵ
2ωÞ

Γð3
4
− ϵ
2ωÞ
i
; for ah:o: trap

; ð47Þ

where L stands for the size of periodic box, so that the
wave function in c.m. frame with zero total momentum
satisfies periodic boundary condition of

ψ ðrelÞ
ϵ ðrþ nLÞ ¼ ψ ðrelÞ

ϵ ðrÞ; n∈Z: ð48Þ

The technical details of derivation of Eq. (47) can be found
in Refs. [31,33,34] and also Appendix A, the same
approach applies to the one-dimensional case as well.
Using the fact that

1

π
½△δðϵnÞ þ△ϕðϵnÞ� ¼ 1; n ¼ 0; 1;…; ð49Þ

where

△δðϵnÞ ¼ δðϵnþ1Þ− δðϵnÞ; △ϕðϵnÞ ¼ ϕðϵnþ1Þ−ϕðϵnÞ;
ð50Þ

we thus have a relation

X∞
n¼0

e−iϵnt ¼ 1

π

X∞
n¼0

△ϵn

�
△δðϵnÞ
△ϵn

þ△ϕðϵnÞ
△ϵn

�
e−iϵnt; ð51Þ

where △ϵn ¼ ϵnþ1 − ϵn. When the particle interaction is
turned off, δðϵÞ → 0, the energy spectra is totally deter-
mined by condition
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ϕðϵð0Þn Þ ¼ nπ;

where ϵð0Þn stands for the nth eigenenergy of noninteracting
two-fermion system in a trap. Hence, we also have a
relation,

X∞
n¼0

e−iϵ
ð0Þ
n t ¼ 1

π

X∞
n¼0

△ϵð0Þn
△ϕðϵð0Þn Þ
△ϵð0Þn

e−iϵ
ð0Þ
n t: ð52Þ

As the system in a trap is approaching infinite volume
limit, such as L → ∞ in a periodic box or ω → 0 in a
harmonic oscillator trap, we find

X∞
n¼0

e−iϵnt →
trap→∞ 1

π

Z
∞

0

dϵ

�
dδðϵÞ
dϵ

þ dϕðϵÞ
dϵ

�
e−iϵt ð53Þ

and

X∞
n¼0

e−iϵ
ð0Þ
n t →

trap→∞ 1

π

Z
∞

0

dϵ
dϕðϵÞ
dϵ

e−iϵt: ð54Þ

Hence it is tempting to conclude that

X∞
n¼0

h
e−iϵnt − e−iϵ

ð0Þ
n t
i

→
trap→∞ 1

π

Z
∞

0

dϵ
dδðϵÞ
dϵ

e−iϵt: ð55Þ

At the limit of VðrÞ → 0, the left-hand side of Eq. (55)
clearly approaches zero, on the contrary, on the right-hand

side of Eq. (55), the weak interaction limit of dδðϵÞ
dϵ is not

always well defined, such as in the case of 1D contact
interaction potential. However, in general, the weak inter-
action limit of δðϵÞ is well defined and approaches zero;
hence, using integration by part, we find

1

π

Z
∞

0

dϵ
dδðϵÞ
dϵ

e−iϵt →
VðrÞ→0

−
δð0Þ
π

; ð56Þ

where δð0Þ is the possible nontrivial surface term as the
result of integration by part, other surface terms are
assumed trivial and vanishing. For instance, for the
particles interacting with a contact interaction in 1D, the
phase shift at branch point has nontrivial value: δð0Þ ¼ − π

2
.

In order to make sure both sides of Eq. (55) approach zero

at the limit of weak interaction, the constant shift, − δð0Þ
π , at

right-hand side must be subtracted. Therefore, at the
infinite volume limit, the difference between integrated
correlation functions with and without particle interactions
is associated to scattering phase shift by

½CðrelÞðtÞ − CðrelÞ
0 ðtÞ�t>0 →

trap→∞ θðtÞ
π

Z
∞

0

dϵ
dδðϵÞ
dϵ

e−iϵt

þ θðtÞ
π

δð0Þ; ð57Þ

where CðrelÞ
0 ðtÞ is the integrated correlation function of

noninteracting particles in a trap,

CðrelÞ
0 ðtÞjt>0 ¼ θðtÞ

X∞
n¼0

e−iϵ
ð0Þ
n t: ð58Þ

Similarly, the constant shift, − δð0Þ
π , must be subtracted in

Eq. (53) as well

X∞
n¼0

e−iϵnt →
trap→∞ 1

π

Z
∞

0

dϵ

�
dδðϵÞ
dϵ

þ dϕðϵÞ
dϵ

�
e−iϵt þ δð0Þ

π
:

ð59Þ

2. The role of Friedel formula and Krein’s theorem

The expression in Eq. (57) can also be understood by the
relation displayed in Eq. (42). In terms of Green’s function
of a two-particle system in the trap, the difference between
integrated correlation functions with and without particle
interactions is also given by

h
CðrelÞðtÞ − CðrelÞ

0 ðtÞ
i
t>0

¼ i
Z

∞

−∞

dλ
2π

h
Tr½GðtrapÞðλþ i0Þ

− GðtrapÞ
0 ðλþ i0Þ�

i
e−iλt; ð60Þ

where Tr½GðtrapÞ
0 ðλþ i0Þ� stands for the trace of Green’s

function of two noninteracting particles in the trap. As the
system is approaching infinite volume limit, thus

h
CðrelÞðtÞ − CðrelÞ

0 ðtÞ
i
t>0

→
trap→∞

i
Z

∞

−∞

dλ
2π

h
Tr½Gð∞Þðλþ i0Þ

−Gð∞Þ
0 ðλþ i0Þ�

i
e−iλt: ð61Þ

As demonstrated in Refs. [64–68] and also see discussion in
Ref. [69], the difference between the trace of Green’s
function of the interacting system and free particle system
is related to the scattering phase shift by Friedel formula and
Krein’s theorem, see the short summary in Appendix B,

−Tr½Gð∞ÞðλÞ −Gð∞Þ
0 ðλÞ� ¼ 1

π

Z
∞

0

dϵ
δðϵÞ

ðϵ − λÞ2 ; ð62Þ

where we have assumed Tr½Gð∞ÞðλÞ� only has a dominant
physical branch cut along positive real axis in complex λ
plane: λ∈ ½0;∞� and an unphysical branch cut sitting along
a negative real axis has been neglected at the scope of
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current work. By using Eqs. (62) and (61) thus can be
rearranged to

h
CðrelÞðtÞ − CðrelÞ

0 ðtÞ
i
t>0

→
trap→∞

−
1

π

Z
∞

0

dϵδðϵÞ d
dϵ

×

�
i
Z

∞

−∞

dλ
2π

e−iλt

λ − ϵþ i0

�
: ð63Þ

Using the identity Eq. (36) again, we find

h
CðrelÞðtÞ − CðrelÞ

0 ðtÞ
i
t>0

→
trap→∞

−
θðtÞ
π

Z
∞

0

dϵδðϵÞ de
−iϵt

dϵ
;

ð64Þ

hence by integrating by part and assuming δð∞Þ → 0,
Eq. (57) is obtained again.

C. One-dimensional analytic solutions of two fermions
in traps interacting with a contact interaction

In this subsection, the infinite volume limit of difference
of integrated correlation functions between two interacting
and noninteracting particles in the trap is illustrated by
considering a simple contact interaction model. The scat-
tering phase shift of particles interaction in infinite volume
is exactly solvable. Both a periodic box and a harmonic
oscillator trap are considered; the derivation of analytic
expression of quantization conditions in both cases are
presented in Appendix A. The discrete energy spectra of
particles interaction in a trap can be solved rather straight-
forwardly numerically. We will show that the difference of
integrated correlation functions in both cases approaches
the same infinite volume limit that is solely determined by
particles interaction steadily and converge rather fast near
small t region.

1. Periodic box

Let us first consider a simple problem of 1D two-fermion
of total spin-zero interacting with a contact interaction in a
periodic box, the dynamics of the two-particle system in a
c.m. frame is described by

�
−

1

2μ

d2

dr2
þV0

X
n∈Z

δðrþ nLÞ
�
ψ ðrelÞ
ϵ ðrÞ ¼ ϵψ ðrelÞ

ϵ ðrÞ; ð65Þ

where V0 is the strength of contact interaction and L is the
size of periodic box. The wave function is symmetric under

spatial inversion, ψ ðrelÞ
ϵ ð−rÞ ¼ ψ ðrelÞ

ϵ ðrÞ, and also must
satisfy the periodic boundary condition in Eq. (48). For
a contact interaction, the analytic expression of quantiza-
tion condition can be obtained, see, e.g., Refs. [20–23],

δðϵnÞ þ
ffiffiffiffiffiffiffiffiffiffi
2μϵn

p L
2
¼ nπ; n ¼ 0; 1;…; ð66Þ

where the analytic expression of phase shift is

δðϵÞ ¼ cot−1
�
−

ffiffiffiffiffiffiffiffi
2μϵ

p
μV0

�
: ð67Þ

The integrated correlation function of trapped system in
Euclidean time, t ¼ −iτ, is defined by

CðrelÞðtÞ − CðrelÞ
0 ðtÞ ¼t¼−iτX∞

n¼0

h
e−ϵnτ − e−ϵ

ð0Þ
n τ
i
; ð68Þ

where the energy spectra of interacting trapped system, ϵn,
are determined by Eq. (66), see, e.g., Fig. 1(a).

ϵð0Þn ¼ 1

2μ

�
2πn
L

�
2

is energy spectrum of noninteracting particles in a periodic

box. CðrelÞ
0 ðtÞ can be evaluated analytically,

CðrelÞ
0 ðtÞ ¼t¼−iτ 1

2
þ 1

2
ϑ3ðe−ð

2π
L Þ2 τ

2μÞ →
L→∞

ffiffiffiffiffiffiffiffi
μ

2πτ

r
L
2
; ð69Þ

where ϑ3ðzÞ is Jacobi elliptic theta function [70]. At the
limit of large volume, according to Eq. (59), we also have

X∞
n¼0

e−ϵnτ →
L→∞

t¼−iτ

1

π

Z
∞

0

dϵ

�
dδðϵÞ
dϵ

þ μffiffiffiffiffiffiffiffi
2μϵ

p L
2

�
e−ϵτ þ δð0Þ

π
:

ð70Þ

Using Eq. (67), the analytic expression on the right-hand
side of above equation can be obtained

CðrelÞðtÞ →
L→∞

t¼−iτ

1

2
erfc

�
μV0

ffiffiffiffiffi
τ

2μ

r �
eðμV0Þ2 τ

2μ þ
ffiffiffiffiffiffiffiffi
μ

2πτ

r
L
2
−
1

2
:

ð71Þ

We can now see clearly that both CðrelÞ
0 ðtÞ and CðrelÞðtÞ have

the same divergent behavior,
ffiffiffiffiffiμ
2πτ

p
L
2
, at the limit of L → ∞

and also τ → 0. However, the divergence cancel out
completely between them; hence we find

CðrelÞðtÞ − CðrelÞ
0 ðtÞ →

L→∞

t¼−iτ

1

2
erfc

�
μV0

ffiffiffiffiffi
τ

2μ

r �
eðμV0Þ2 τ

2μ −
1

2
;

ð72Þ

see Fig. 1(b) for the comparison of difference of integrated
correlation functions in a periodic box vs infinite vol-
ume limit.
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2. Harmonic oscillator trap

Next let us consider two fermions of zero total spin
interacting by a contact potential in a harmonic oscillator
trap, the dynamics of two-particle system is described by

�
−

1

2μ

d2

dr2
þ 1

2
μω2r2þV0δðrÞ

�
ψ ðrelÞ
ϵ ðrÞ ¼ ϵψ ðrelÞ

ϵ ðrÞ: ð73Þ

The spatial wave function again must be symmetric under

spatial inversion, ψ ðrelÞ
ϵ ð−rÞ ¼ ψ ðrelÞ

ϵ ðrÞ, then only even-
parity solutions will contribute to the difference of integrated
correlation functions. The analytic expression of QC is still
given by, see, e.g., Refs. [33,34],

δðϵnÞ þ ϕðϵnÞ ¼ nπ;

where ϕðϵÞ is assumed a smooth monotonically varying
function,

ϕðϵÞ ¼ −cot−1
� ffiffiffiffiffiffi

ϵ

2ω

r
Γð1

4
− ϵ

2ωÞ
Γð3

4
− ϵ

2ωÞ
�
þ lπ; l∈Z: ð74Þ

The lπ is added to keep ϕðϵÞ monotonically when cot−1ðzÞ
starts jumping between branches, see, e.g., Fig. 2(a).
Asymptotically ϕðϵÞ thus behaves as

ϕðϵÞ →ω→0

8<
:

πð ϵ
2ω −

1
4
Þ; ϵ ≫ ω

− π
2
þ Γ½1

4
�

Γ½3
4
�
ffiffiffiffi
ϵ
2ω

p
; ϵ ≪ ω

: ð75Þ

The noninteracting energy spectra of h.o. trap are

ϵð0Þn ¼ ω

�
nþ 1

2

�
;

hence for even parity solutions, we have

X∞
n¼0

e−ωð2nþ1
2
Þτ ¼ 1

2
cschðωτÞeωτ

2 →
ω→0 1

2ωτ
: ð76Þ

Using asymptotic form of ϕðϵÞ in Eq. (75), we find

1

π

Z
∞

0

dϵ
dϕðϵÞ
dϵ

e−ϵτ ≃
1

π

Z
ω

0

dϵ
dϕðϵÞ
dϵ

e−ϵτ

þ e−ωτ

2ωτ
→
ω→0 1

2ωτ
ð77Þ

and

X∞
n¼0

e−ϵnτ →
ω→0 1

2
erfc

 
μV0

ffiffiffiffiffi
τ

2μ

r !
eðμV0Þ2 τ

2μ þ 1

2ωτ
−
1

2
: ð78Þ

Similarly in harmonic oscillator trap, both CðrelÞ
0 ðtÞ and

CðrelÞðtÞ again show the exact same divergence, 1
2ωτ, at the

limit of ω → 0 and also τ → 0. Hence after the cancellation
of divergence, we find again

CðrelÞðtÞ − CðrelÞ
0 ðtÞ →

ω→0

t¼−iτ

1

2
erfc

 
μV0

ffiffiffiffiffi
τ

2μ

r !
eðμV0Þ2 τ

2μ −
1

2
;

ð79Þ

FIG. 1. The energy spectra and difference of integrated correlation function plots for particles interaction in a periodic box:
(a) δðϵnÞ þ

ffiffiffiffiffiffiffiffiffiffi
2μϵn

p L
2
(solid black) vs nπ (dashed red) with L ¼ 3, energy spectra are located at intersection points of black and red curves;

(b) 1
π

R
∞
0 dϵ dδðϵÞ

dϵ e−ϵτ − 1
2
(solid black) vs CðrelÞðtÞ − CðrelÞ

0 ðtÞ (dashed red) with L ¼ 3, 5, 10. The rest of parameters are taken as V0 ¼ 0.5
and μ ¼ 1.
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see Fig. 2(b) for the comparison of difference of integrated
correlation functions in the harmonic oscillator trap vs
infinite volume limit.

D. A short summary

Now we can see clearly that, regardless the type of traps
that are used, at infinite volume limit where the size of trap
is much larger than the range of interactions, the difference
of integrated correlation functions of trapped systems all
approach the same limit,

CðrelÞðtÞ−CðrelÞ
0 ðtÞ →

trap→∞

t¼−iτ

1

π

Z
∞

0

dϵ
dδðϵÞ
dϵ

e−ϵτ þ δð0Þ
π

; ð80Þ

where the phase shift is given by

δðϵÞ ¼ cot−1
�
−

ffiffiffiffiffiffiffiffi
2μϵ

p
μV0

�

for contact interaction potential. The analytic expression of
infinite volume limit is given by

1

π

Z
∞

0

dϵ
dδðϵÞ
dϵ

e−ϵτ þ δð0Þ
π

¼ 1

2
erfc

 
μV0

ffiffiffiffiffi
τ

2μ

r !
eðμV0Þ2 τ

2μ −
1

2
: ð81Þ

As also illustrated in periodic box and harmonic oscillator

trap examples, though both CðrelÞðtÞ and CðrelÞ
0 ðtÞ are

divergent as τ ∼ 0, the divergence is canceled out exactly

in the difference of 2, hence CðrelÞðtÞ − CðrelÞ
0 ðtÞ→τ∼00

smoothly.

IV. PERTURBATION CALCULATION
OF TWO FERMIONS CORRELATION FUNCTION

OF A LATTICE FIELD THEORY MODEL

In this section, we consider a lattice field theory model of
fermions interacting with a contact interaction in a periodic
box. For the weak interaction coupling strength, the pertur-
bation calculation of two fermions correlation function can
be carried out directly in path integral representation. We
demonstrated that the infinite volume limit of difference of
integrated correlation functions indeed approaches analytic
results in Eqs. (80) and (81).
The two fermions correlation function in lattice theory

usually is computed in Euclidean space-time by path
integral representation,

CðrelÞðr; t; r0; 0Þ ¼
R
DψDψ†Ôðr; τÞÔ†ðr0; 0Þe−SE½ψ ;ψ†�R

DψDψ†e−SE½ψ ;ψ†� ;

ð82Þ

where again t ¼ −iτ. The relative motion of two-particle
creation operator is projected by

Ô†ðr;τÞ

¼
Z

L

0

dx2ffiffiffiffi
L

p ψ†
↑ðrþ x2;τÞψ†

↓ðx2;τÞ−ψ†
↓ðrþ x2;τÞψ†

↑ðx2;τÞ
2

:

ð83Þ

FIG. 2. The energy spectra and difference of integrated correlation function plots for particles interaction in a harmonic oscillator trap:
(a) δðϵnÞ þ ϕðϵnÞ (solid black) vs nπ (dashed red) with ω ¼ 0.2, energy spectra are located at intersection points of black and red curves;

(b) 1
π

R∞
0 dϵ dδðϵÞ

dϵ e−ϵτ − 1
2
(solid black) vs CðrelÞðtÞ − CðrelÞ

0 ðtÞ (dashed red) with ω ¼ 0.02, 0.1, 0.2. The rest of parameters are taken as
V0 ¼ 0.5 and μ ¼ 1.

PENG GUO and VLADIMIR GASPARIAN PHYS. REV. D 108, 074504 (2023)

074504-10



The Euclidean action for fermions interacting with a
contact interaction in a periodic box with size of L is
defined by

SE½ψ ;ψ†� ¼ S0þSV;

S0¼
Z

∞

−∞
dτ
Z

L

0

dx
X
σ¼↑;↓

ψ†
σðx;τÞ

�
∂τ−

∇2

2m

�
ψσðx;τÞ;

SV ¼
V0

2

Z
∞

−∞
dτ
Z

L

0

dxψ†
↑ðx;τÞψ↑ðx;τÞ

×ψ†
↓ðx;τÞψ↓ðx;τÞ: ð84Þ

The fermion field operators satisfy periodic boundary
condition,

ψσðxþL;τÞ ¼ ψσðx;τÞ; ψ†
σðxþL;τÞ ¼ ψ†

σðx;τÞ: ð85Þ

We remark that in current scope of discussion, zero lattice
spacings in both spatial and temporal directions are
assumed. The size of lattice extent in temporal direction
is also considered infinitely large. Hence lattice artifacts,
such as finite lattice spacings and thermal effect in finite
lattice size in temporal direction, etc., are avoided in the
current discussion. The focus of current work is thus given
to the finite volume effect of correlation function of a
trapped fermions system in a periodic box and its infinite
volume limit.
The complete and analytic solutions of two fermions

correlation function in path integral representation in field
theory seems like a formidable task in general. Fortunately
for the weak interaction, V0 ∼ 0, perturbation theory can be
carried out. The leading order effect of two fermions
correlation function can be obtained rather straightfor-
wardly, and the higher order effects can be carried out
systematically in principle. In current work, the only leading
order effect of two fermions correlation function is evalu-
ated, and we show that its infinite volume limit indeed is
consistent with perturbation expansion of Eq. (81).

A. The leading order effect of perturbation calculation

For weak interaction, V0 ∼ 0, two-particle correlation
function can be computed analytically by perturbation
expansion of

e−SE ∼ ð1 − SV þ � � �Þe−S0 :

The leading order result is thus given by

CðrelÞðr; t; r0; 0Þ − CðrelÞ
0 ðr; t; r0; 0Þ

¼ −
R
DψDψ†Ôðr; τÞÔ†ðr0; 0ÞSVe−S0R

DψDψ†e−S0
þOðV2

0Þ: ð86Þ

Working out all the Wick contractions, we thus find

CðrelÞðr; t;r0;0Þ−CðrelÞ
0 ðr; t;r0;0Þ

¼−
V0

L

Z
L

0

dx2

Z
L

0

dx02

Z
∞

−∞
dτ00
Z

L

0

dx00

×D−1
0 ðrþ x2 − x00;τ− τ00ÞD−1

0 ðx2 − x00;τ− τ00Þ
×D−1

0 ðx00 − r0− x02;τ
00ÞD−1

0 ðx00 − x02;τ
00ÞþOðV2

0Þ; ð87Þ

where a free single fermion propagator is defined by

δσ;σ0D−1
0 ðx− x0;τ− τ0Þ ¼

R
DψDψ†ψσðx;τÞψ†

σ0 ðx0;τ0Þe−S0R
DψDψ†e−S0

:

ð88Þ

The diagrammatic representation of Eq. (87) is illustrated
in Fig. 3.
Using S0 in Eq. (84), and the Fourier expansion of a free

fermion field operator in Euclidean space-time,

ψσðx; τÞ ¼
Z

∞

−∞

dω
2π

1

L

X
k¼2πn

L ;n∈Z

eiωτeikxψ̃σðk;ωÞ; ð89Þ

the free single fermion propagator can be worked out rather
straightforwardly, and we find

D−1
0 ðx − x0; τ − τ0Þ ¼

Z
∞

−∞

dω
2π

1

L

X
k¼2πn

L ;n∈Z

eiωðτ−τ0Þeikðx−x0Þ

iωþ k2
2m

:

ð90Þ

Therefore we also find

CðrelÞðr; t; r0; 0Þ − CðrelÞ
0 ðr; t; r0; 0Þ

¼ −V0

Z
∞

−∞

dω
2π

eiωτGðLÞ
0 ðr;−iωÞGðLÞ

0 ðr0;−iωÞ; ð91Þ

where two-fermion Green’s function in a periodic box is
defined by

GðLÞ
0 ðr;−iωÞ ¼ 1

L

X
k¼2πn

L ;n∈Z

eikr

−iω − k2
2μ

; ð92Þ

the analytic expression of GðLÞ
0 function is given

by Eq. (A6).

FIG. 3. Diagrammatic representation of perturbation calcula-
tion in Eq. (87).
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B. Integrated two-fermion correlation function
and its infinite volume limit

With perturbation result in Eq. (91), the difference of
integrated two-fermion correlation function

CðrelÞðtÞ−CðrelÞ
0 ðtÞ ¼

Z
L

0

½CðrelÞðr; t; r;0Þ−CðrelÞ
0 ðr; t; r;0Þ�;

ð93Þ

is thus given by

CðrelÞðtÞ − CðrelÞ
0 ðtÞ ¼ V0

X
k¼2πn

L ;n∈Z

Z
∞

−∞

dω
2π

eiωτ

×
d

dðiωÞ

 
1

iωþ k2
2μ

!
; ð94Þ

the integration of ω can be carried out by integration by
part, we thus find

CðrelÞðtÞ − CðrelÞ
0 ðtÞ ¼ −τ

V0

L
ϑ3ðe−ð

2π
L Þ2 τ

2μÞ; ð95Þ

where

ϑ3ðe−ð
2π
L Þ2 τ

2μÞ ¼
X

k¼2πn
L ;n∈Z

e−
k2
2μτ

is a Jacobi elliptic theta function [70]. As L → ∞,
perturbation calculation indeed approach

CðrelÞðtÞ − CðrelÞ
0 ðtÞ →

L→∞

t¼−iτ
−τV0

Z
∞

−∞

dk
2π

e−
k2
2μτ ¼ −V0

ffiffiffiffiffi
μτ

pffiffiffiffiffiffi
2π

p :

ð96Þ

This is indeed consistent with the perturbation expansion of
analytic result in infinite volume limit in Eq. (81),

1

2
erfc

 
μV0

ffiffiffiffiffi
τ

2μ

r !
eðμV0Þ2 τ

2μ −
1

2
→

V0→0
− V0

ffiffiffiffiffi
μτ

pffiffiffiffiffiffi
2π

p þOðV2
0Þ;

ð97Þ

also see Fig. 4 for an example of the perturbation
calculation result vs the full result in infinite volume limit.

C. Leading order contribution of energy levels
of two-fermion system in finite volume

As a separate check, we can also evaluate leading order
contribution of energy levels of two-fermion system in
perturbation theory in finite volume. The individual energy
level can be projected out by

CðrelÞðτ; ϵnÞ ¼
σn
L

Z
L

0

dr
Z

L

0

dr0e−iknðr−r0ÞCðrelÞðr; t; r0; 0Þ;

ð98Þ

where kn ¼ 2πn
L , n∈Z is the free particle’s momentum

in finite volume, and ϵn ¼ k2n
2μ þ δϵn is the perturbation

result of total energy of two fermions system, where δϵn
stands for the energy shift due to interaction. The σn is
degeneracy factor

σn ¼
�
2; if n > 0

1; if n ¼ 0
; ð99Þ

since both k�n ¼ �kn correspond to the same free

two-fermion energy level: ϵð0Þn ¼ k2n
2μ. The leading order

result of energy shift can also be obtained by using
quantization condition in Eqs. (66) and (67), up to order
of V0, we thus find

δϵn ¼ σn
V0

L
: ð100Þ

The same conclusion can be obtained by considering
projecting out energy levels from two-fermion correlation
function.
First of all, using Eqs. (91) and (98), we thus find

CðrelÞðτ; ϵnÞ − CðrelÞ
0 ðτ; ϵnÞ ¼ −τ

σnV0

L
e−

k2n
2μτ þO

�
V2
0

L2

�
;

ð101Þ

FIG. 4. Perturbation calculation of CðrelÞðtÞ − CðrelÞ
0 ðtÞ (dashed

red) with L ¼ 3, 5, 10 vs full result in infinite volume limit
1
π

R
∞
0 dϵ dδðϵÞ

dϵ e−ϵτ − 1
2
(solid black). The rest of parameters are

taken as V0 ¼ 0.04 and μ ¼ 1.
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and it is related to Eq. (95) by

CðrelÞðtÞ − CðrelÞ
0 ðtÞ ¼

X∞
n¼0

h
CðrelÞðτ; ϵnÞ − CðrelÞ

0 ðτ; ϵnÞ
i
:

ð102Þ

Next, we also need to consider the free two-fermion
correlation function that is defined by

CðrelÞ
0 ðr; t; r0; 0Þ ¼

R
DψDψ†Ôðr; τÞÔ†ðr0; 0Þe−S0R

DψDψ†e−S0
ð103Þ

and is given explicitly in terms of free fermion propagators
by

CðrelÞ
0 ðr; t;r0;0Þ ¼ 1

2L

Z
L

0

dx2

Z
L

0

dx02

×
h
D−1

0 ðrþ x2− r0 − x02;τÞD−1
0 ðx2 − x02;τÞ

þD−1
0 ðrþ x2− x02;τÞD−1

0 ðx2− r0− x02;τÞ
i
:

ð104Þ

Using Eq. (88), we thus find

CðrelÞ
0 ðr; t; r0; 0Þ ¼ 1

L

X
kn¼2πn

L ;n∈Z

cosðknrÞ cosðknr0Þe−
k2n
2μτ:

ð105Þ

This is indeed consistent with spectral representation of
correlation function in Eq. (35), where the relative wave
function of two free particles in a periodic box is given by

ψ ðLÞ
kn

ðrÞ ¼ 1ffiffiffiffi
L

p cosðknrÞ; ð106Þ

which is normalized by

Z
L

0

drψ ðLÞ
kn

ðrÞψ ðLÞ�
k0n

ðrÞ ¼ δkn;k0n þ δkn;−k0n
2

¼ δjknj;jk0nj
σn

: ð107Þ

Hence the projected noninteracting two-fermion correlation
function is given by

CðrelÞ
0 ðτ; ϵnÞ ¼ e−

k2n
2μτ: ð108Þ

Putting all together, up to leading order, we find

CðrelÞðτ; ϵnÞ ¼ e−
k2n
2μτ

�
1 − τ

σnV0

L
þO

�
V2
0

L2

��
: ð109Þ

The leading order contribution of energy level of two-
fermion system in a finite volume is therefore obtained by

ϵn ¼ −
1

τ
lnCðrelÞðτ; ϵnÞ ¼

k2n
2μ

þ σnV0

L
þO

�
V2
0

L2

�
: ð110Þ

The leading effect of energy shift due to interaction in a
finite volume in perturbation theory is thus again given
by δϵn ¼ σn

V0

L .
In terms of perturbation calculation, now we can indeed

see the structure mentioned in Eq. (4),

CðrelÞðtÞ − CðrelÞ
0 ðtÞ ¼ −τhV̂ðτÞi þ � � � ; ð111Þ

where

hV̂ðτÞi ¼
X∞
n¼0

�
σnV0

L

�
e−ϵ

ð0Þ
n τ ∝

1

L
: ð112Þ

Also as demonstrated in Fig. 4, the difference of integrated
correlation functions approaches infinite volume limit
much more rapidly in the region of τ ≪ L.

V. MONTE CARLO SIMULATION TEST
IN 1D QUANTUM MECHANICS

To demonstrate the feasibility of proposed formalism, we
conduct a simple Monte Carlo simulation test with a 1D
quantum mechanics model in this section.

A. A 1D quantum mechanics model

Considering a spinless particle with the mass μ interact-
ing with a short-range repulsive square well potential in a
harmonic oscillator trap, the eigensolutions are determined
by Schrödinger equations,

�
−

1

2μ

d2

dr2
þ 1

2
μω2r2 þ VðrÞ

�
ψnðrÞ ¼ ϵnψnðrÞ; ð113Þ

where

VðrÞ ¼
� V0

b ; r∈ ½− b
2
; b
2
�

0; otherwise
; →

b→0
V0δðrÞ: ð114Þ

The energy spectra of the system can be solved by
diagonalizing the Hamiltonian matrix

Hn;n0 ¼ δn;n0ω

�
nþ1

2

�
þV0

b

Z b
2

−b
2

drφðωÞ�
n ðrÞφðωÞ

n0 ðrÞ; ð115Þ

where φðωÞ
n ðrÞ are eigensolutions of harmonic oscillator

potential,

φðωÞ
n ðrÞ ¼ 1ffiffiffiffiffiffiffiffiffi

2nn!
p

�
μω

π

�1
4

e−
μω
2
r2Hnð

ffiffiffiffiffiffi
μω

p
rÞ: ð116Þ
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B. Integrated transition amplitude
and Monte Carlo simulation

In Euclidean space-time, the transition amplitude for a
particle propagating from ðr; 0Þ to ðr0; τÞ is defined by

hr0je−Ĥτjri ¼
X∞
n¼0

e−ϵnτψnðrÞψ�
nðr0Þ: ð117Þ

Hence, integrated transition amplitude (particle propagator)
is associated to the partition function in statistics by

CðτÞ ¼
Z

drhrje−Ĥτjri ¼
X∞
n¼0

e−ϵnτ →
τ→β

Tr½e−βH�: ð118Þ

The path integral representation of the integrated particle
propagator is given by, see, e.g., Refs. [71,72],

CðτÞ ¼ lim
Nτ→∞

�
μ

2πaτ

�Nτ
2

Z YNτ

i¼1

drie−SEðfrigÞ; ð119Þ

where the time interval ½0; τ� is divided into Nτ small steps
of width of aτ ¼ τ

Nτ
. The discrete Euclidean space-time

action is given by the sum of trap action and interaction

term, SEðfrigÞ ¼ SðωÞE ðfrigÞ þ SðVÞE ðfrigÞ:

SðωÞE ðfrigÞ ¼ aτ
XNτ

i¼1

�
μ

2

�
riþ1 − ri

aτ

�
2

þ 1

2
μω2r2i

�
ð120Þ

and

SðVÞE ðfrigÞ ¼ aτ
XNτ

i¼1

VðriÞ; ð121Þ

where r0 ¼ r and rNτ
¼ r0 ¼ r are initial and finial position

of particle, respectively. Similarly when the interaction,
VðrÞ, is turned off, the integrated particle propagator in the
harmonic oscillator trap is defined by

C0ðτÞ ¼
X∞
n¼0

e−ωðnþ1
2
Þτ ¼ 1

2
csch

�
ωτ

2

�
;

¼ lim
Nτ→∞

�
μ

2πaτ

�Nτ
2

Z YNτ

i¼1

drie−S
ðωÞ
E ðfrigÞ: ð122Þ

For a finite square well model, without the constraint of
Pauli exclusive principle, now both even and odd parity
states contribute to CðτÞ.
The path integral representation of ratio of CðτÞ and

C0ðτÞ can be written as

CðτÞ
C0ðτÞ

¼ lim
Nτ→∞

Z YNτ

i¼1

driρðfrigÞe−S
ðVÞ
E ðfrigÞ; ð123Þ

where

ρðfrigÞ ¼
�

μ

2πaτ

�Nτ
2 e−S

ðωÞ
E ðfrigÞ

C0ðτÞ
ð124Þ

is positive definite and

Z YNτ

i¼1

driρðfrigÞ ¼ 1: ð125Þ

Hence ρðfrigÞ can be interpreted as probability density, and
Eq. (123) can be computed via a standard Monte Carlo
simulation method,

CðτÞ
C0ðτÞ

¼ 1

Ncfg

XNcfg

α¼1

e−S
ðVÞ
E ðfrðαÞi gÞ; ð126Þ

where Ncfg is total number of configurations, α is used to

label each configuration, the random values of frðαÞi g for
each individual configuration can be generated according

to the probability density distribution ρðfrðαÞi gÞ. The
Monte Carlo simulation can be performed rather straight-
forwardly by standard Metropolis algorithm, see, e.g.,
Refs. [71,72].

C. Scattering phase shifts and its relation to integrated
transition amplitude

The scattering amplitudes for a repulsive square well
potential in infinite volume can be solved analytically, see,
e.g., Appendix D in Ref. [20]. The phase shifts, δ�ðϵÞ, are
given by

δ�ðϵÞ ¼ cot−1

2
41þ

�
k
kV

	�1
cot
�
kb
2

	
cot
�
kVb
2

	
cot
�
kb
2

	
−
�

k
kV

	�1
cot
�
kVb
2

	
3
5; ð127Þ

where subscripts ðþ=−Þ are used to label even and odd
parity states, respectively, and

k ¼
ffiffiffiffiffiffiffiffi
2μϵ

p
; kV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

�
ϵ −

V0

b

�s
:

As b → 0,

δþðϵÞ→b→0
cot−1

�
−

k
μV0

�
; δ−ðϵÞ→b→0

0; ð128Þ
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the square well potential approaches a contact interaction,
and solutions for odd parity states are suppressed. The
scattering phase shifts are associated to CðτÞ and C0ðτÞ by

CðτÞ − C0ðτÞ →ω→0 1

π

Z
∞

0

dϵ

�
dδþðϵÞ
dϵ

þ dδ−ðϵÞ
dϵ

�
e−ϵτ

þ δþð0Þ þ δ−ð0Þ
π

; ð129Þ

where δþð0Þ ¼ − π
2
and δ−ð0Þ ¼ 0.

D. Monte Carlo data vs exact solutions vs infinite
volume limit result

Numerical test for the system of a spinless particle
interacting with a square well potential are carried out and
presented in this subsection, the aim is to demonstrate that
the Monte Carlo result of a trapped system approaches and
converge with infinite volume limit result at small
Euclidean time region.

(i) The Monte Carlo computation of CðτÞ
C0ðτÞ in Eq. (126)

for the system in a harmonic oscillator trap is carried
out by a standard Metropolis algorithm, see, e.g.,
Refs. [71,72]. The simulations are performed with a
fixed number of steps in temporal dimension,
Nτ ¼ 100, so the lattice spacing aτ ¼ τ

Nτ
varies for

τ∈ ½0.5; 5�. The typical half million measurements
are generated for each τ. The choice of other
parameters are V0 ¼ 1, μ ¼ 1, and b ¼ 0.2 for a
square well potential, and various ωs for a harmonic
oscillator trap are used in our simulation: ω ¼ 0.1,
0.2, and 0.5. The variance of data samples are
computed by a Jackknife resampling method.

(ii) As a comparison, the energy spectra of particle
interacting with a square well potential in a harmonic
oscillator trap can be solved by diagonalizing
Hamiltonian matrix in Eq. (115), so the exact
solution of CðτÞ

C0ðτÞ can be obtained, where CðτÞ ¼P∞
n¼0 e

−ϵnτ and C0ðτÞ ¼ 1
2
cschðωτ

2
Þ.

(iii) The scattering of a spinless particle off a square well
potential in infinite volume can be solved exactly,
the analytic expression of phase shifts for both parity
states are given in Eq. (127). At infinite volume
limit,

CðτÞ
C0ðτÞ

→
ω→0

1þ
�
1

π

Z
∞

0

dϵ
dðδþ þ δ−Þ

dϵ
e−ϵτ −

1

2

�
ωτ:

ð130Þ

For a small b ∼ 0.1, the scattering solutions of a
square well potential agree well with scattering
solution of a contact interaction.

The comparison of Monte Carlo data of CðτÞ
C0ðτÞ (red error

bars) vs exact solutions (solid black) vs infinite volume
limit result (dashed purple) are shown in Figs. 5(a)–5(c) for

various ωs. The Monte Carlo data of CðτÞ − C0ðτÞ for
various ωs (colored error bars) vs infinite volume limit
result (dashed purple) are shown in Fig. 5(d), the infinite
volume limit result with a contact interaction (solid blue) is
also plotted in Fig. 5(d) as a comparison.

VI. DISCUSSION AND SUMMARY

In summary, a relation between integrated correlation
function of a trapped system and infinite volume scattering
phase shift is derived in present work. We show that even
with a modest size of a trap, the difference of integrated
correlation function of a trapped system with and without
particle interactions at small Euclidean time region
approach steadily to its infinite volume limit that is given
in terms of scattering phase shift by

CðtÞ − C0ðtÞ →
trap→∞

t¼−iτ

1

π

Z
∞

0

dϵ
dδðϵÞ
dϵ

e−ϵτ þ δð0Þ
π

:

Therefore, the scattering phase shifts may be extracted from
lattice simulation of integrated correlation function at small
time region, which is in great contrast to conventional two-
step approach in extracting scattering information from
lattice calculation: extracting energy levels from temporal
correlation function in large Euclidean time region in the
first step and then converting energy spectra into phase
shifts by applying Lüscher formula in the second step. Both
(1) perturbation calculation of ð1þ 1ÞD lattice Euclidean
field theory model of fermions interacting with a contact
interaction and (2) Monte Carlo simulation of a 1D exactly
solvable quantum mechanics model are carried out to
explore and test the proposed relation, we show both
analytically and numerically that the difference of inte-
grated correlation function of a trapped system indeed
agree well with infinite volume limit at small time region
even for a modest small size of trap.
The fundamental reason of this observation is due to the

fact that integrated trapped correlation functions resemble
the partition function in statistical mechanics,

CðtÞ − C0ðtÞ →
t¼−iτ

Tr½e−Ĥτ − e−Ĥ0τ�;

with τ playing the role of the square of the thermal de
Broglie wavelength. When thermal de Broglie wavelength
is much smaller than size of trap, particles are nearly blind
of the size effect of a trap, the difference of integrated
trapped two-particle correlation functions can be described
in terms of power of τ=L, the leading order contribution is
thus proportional to τhV̂i where hV̂i ∼ 1=L.
The scope of current discussion is still limited to

ð1þ 1ÞD nonrelativistic few-particle dynamics. The cur-
rent focus of this work is to simply demonstrate both
numerically and analytically that the difference of inte-
grated trapped two-particle correlation functions converges
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quickly to its infinite volume limit, which is expressed
through an integral over the derivative of the phase shift
weighted by an exponential factor. The fast convergent
feature of proposed relation near small Euclidean times
may have the potential to provide an alternative approach to
traditional two-step Lüscher formula method. The ultimate
goal is to develop an alternative method that can be a robust
tool to extract phase shift from LQCD calculation espe-
cially in cases when the traditional two-step Lüscher
formula method becomes less effective and determination
of individual energy levels itself is already problematic,

such as in nucleon-nucleon reactions. Much further work is
required to accomplish this ultimate goal. The proposed
approach will have to be extended to include relativistic
dynamics, inelastic effect, etc. Monte Carlo simulation with
field theory models are also demanded for the effectiveness
and robustness test. We also remark that unlike Lüscher
formula approach that relate energy levels to phase shift
directly, our proposed approach requires the physics
motivated modeling of phase shift and then fit to the
LQCD data to fix model parameters. This resembles the
procedure of determination of hadron-hadron scattering

FIG. 5. Comparison of Monte Carlo data of CðτÞ
C0ðτÞ vs infinite volume limit result for a spinless particle interacting with a square well

potential in a harmonic oscillator trap for various ωs. In (a), (b), and (c), we plot Monte Carlo data (red error bars), exact solutions of CðτÞ
C0ðτÞ

by solving Hamiltonian matrix in Eq. (115) (solid black), and infinite volume limit result, 1þ 1
C0ðτÞ

h
1
π

R
∞
0 dϵ dðδþþδ−Þ

dϵ e−ϵτ − 1
2

i
(dashed

purple), for ω ¼ 0.5, 0.2, and 0.1, respectively. (d) Monte Carlo data of CðτÞ − C0ðτÞ for various ωs: ω ¼ 0.1 (black), 0.2 (red), and 0.5

(brown), vs infinite volume limit result with a square well potential, 1π
R∞
0 dϵ dðδþþδ−Þ

dϵ e−ϵτ − 1
2
(dashed purple). The infinite volume limit

result with a contact interaction potential, VðrÞ ¼ V0δðrÞ, is also plotted as a comparison in solid blue. The rest of parameters are taken
as V0 ¼ 1, μ ¼ 1, and b ¼ 0.2.
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amplitudes from experimental data, see, e.g., Ref. [73]. The
model of phase shift in principle can be further constrained
by chiral perturbation theory, dispersion relation approach,
Roy equation, etc., which can ultimately help to narrow
down the parameter space in the model.
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APPENDIX A: QUANTIZATION CONDITION
OF A TRAPPED TWO-PARTICLE SYSTEM

IN ð1 + 1ÞD
Some technical details of the derivation of quantization

condition of trapped two-particle system in ð1þ 1ÞD are
given in this appendix. Let us consider two particles
interacting with a contact interaction in a trap: the two
particles could be either spinless particles or two fermions
in spin singlet state. Hence only even parity state will be
affected by contact interaction. The dynamics of relative
motion of trapped two-particle systems are described by
(1) Eq. (65) for a periodic box, wave function satisfies
periodic boundary condition of wave function in Eq. (48);
and (2) Eq. (73) for a harmonic oscillator trap.
The integral representation of dynamics of trapped

systems are given by the Lippmann-Schwinger equation,

ψ ðrelÞ
ϵ ðrÞ ¼

Z
trap

dr0GðtrapÞ
0 ðr; r0; ϵÞV0δðr0Þψ ðrelÞ

ϵ ðr0Þ; ðA1Þ

where

Z
trap

dr0 ¼
8<
:
R L

2

−L
2

dr0; for a periodic boxR
∞
−∞ dr0; for a h:o: trap

: ðA2Þ

The GðtrapÞ
0 ðr; r0; ϵÞ is Green’s function of noninteracting

particles in a trap: (1) for a periodic box, it satisfies
differential equation,

�
ϵþ 1

2μ

d2

dr2

�
GðtrapÞ

0 ðr; r0; ϵÞ ¼
X
n∈Z

δðr − r0 þ nLÞ; ðA3Þ

and periodic boundary condition,

GðtrapÞ
0 ðrþ nL; r0; ϵÞ ¼ GðtrapÞ

0 ðr; r0; ϵÞ;

and (2) for a harmonic oscillator trap, it satisfies the
following equation:

�
ϵþ 1

2μ

d2

dr2
−
1

2
μω2r2

�
GðtrapÞ

0 ðr; r0; ϵÞ ¼ δðr − r0Þ: ðA4Þ

Hence the discrete energy spectra are determined by the
quantization condition,

1

V0

¼ GðtrapÞ
0 ð0; 0; ϵÞ: ðA5Þ

The analytic expression of GðtrapÞ
0 ðr; r0; ϵÞ can be

obtained for both periodic box and harmonic oscillator trap:
(1) for a periodic box, see, e.g., Refs. [13,20,26]

GðtrapÞ
0 ðr; r0; ϵÞ ¼ 1

L

Xp¼2πn
L

n∈Z

eipðr−r0Þ

ϵ − p2

2μ

¼ −
iμ
k

�
eikjr−r0j þ 2 cos kðr − r0Þ

e−ikL − 1

�
;

ðA6Þ

where k ¼ ffiffiffiffiffiffiffiffi
2μϵ

p
;

(2) for a harmonic oscillator trap, see, e.g., Ref. [74],

GðtrapÞ
0 ðr; r0; ϵÞ ¼ −

Γð1
4
− ϵ

2ωÞ
2ωðπrr0Þ12 M ϵ

2ω;−
1
4
ðμωr2<Þ

×W ϵ
2ω;−

1
4
ðμωr2>Þ; ðA7Þ

where M and W are Whittaker functions as defined
in Ref. [75], and r< and r> represent the lesser and
greater of ðr; r0Þ, respectively.

We thus find

GðtrapÞ
0 ð0;0;ϵÞ¼

8<
:

μ
kcotðkL2 Þ; for a periodic box

−
ffiffi
μ

p
2
ffiffiffi
ω

p Γð1
4
− ϵ
2ωÞ

Γð3
4
− ϵ
2ωÞ
; for ah:o: trap

: ðA8Þ

The analytic expression of a scattering phase shift for a
contact interaction is given by Eq. (67),

1

V0

¼ −
μ

k
cot δðϵÞ:

Hence the quantization conditions for (1) a periodic box
and (2) a harmonic oscillator trap can be written in the form
of a Lüscher formula [4] and a BERW formula [5],

cot δðϵÞ −MðϵÞ ¼ 0; ðA9Þ
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where

MðϵÞ ¼

8><
>:

−cot
� ffiffiffiffiffiffiffiffi

2μϵ
p L

2

	
; for a periodic boxffiffi

μ
p
2
ffiffiffi
ω

p Γð1
4
− ϵ
2ωÞ

Γð3
4
− ϵ
2ωÞ
; for a h:o: trap

: ðA10Þ

It is worth mentioning that the superlattice structure that
has great interest in condensed matter physics can be
constructed by placing finite number of short-range
interaction potentials inside of traps. For an example,
assuming potential of a simple superlattice structure
having the form of

VðrÞ ¼
XN
i¼1

Viδðr − aiÞ; ðA11Þ

where ai is the location of an ith contact potential in the
trap, the quantization condition that determine discrete
energy spectra can be obtained from Lippmann-Schwinger
equation:

det ½δi;j − VjG
ðtrapÞ
0 ðai; aj; ϵÞ� ¼ 0: ðA12Þ

With some mathematical manipulation, we can easily show
that the QC in Eq. (A12) is consistent with the result that is
derived from the characteristic determinant approach in
Refs. [76,77]:

det½DN � ¼ 0;

where

ðDNÞi;j ¼ δi;j − VjG
ðtrapÞ
0 ðaj; aj; ϵÞ

ffiffiffiffiffiffiffi
Zi;j

p
; ðA13Þ

and

Zi;j ¼ Zj;i ¼
GðtrapÞ

0 ðri; rj; ϵÞGðtrapÞ
0 ðrj; ri; ϵÞ

GðtrapÞ
0 ðri; ri; ϵÞGðtrapÞ

0 ðrj; rj; ϵÞ
: ðA14Þ

We remark that the determinant in Eq. (A12) is directly
related to the full Green’s function of the system. The full
Green’s function of the system provides the transmission
coefficient and the density of states when opened systems
are considered, and gives the bound spectrum if the system is
closed (see Refs. [76,77] for more details). The poles of
Green’s function are the zeros of the determinant in
Eq. (A12) for a closed system. The characteristic determi-
nant approach is a convenient formalism to determine the
energy spectrum electrons in a layered system or get
sufficiently complete description of electron behavior in a
random potential without finding electron eigenfunctions.

APPENDIX B: FRIEDEL’s FORMULA
AND KREIN’s THEOREM IN ð1 + 1ÞD

SCATTERING THEORY

A brief review of Friedel’s formula and Krein’s theorem
in ð1þ 1ÞD scattering theory is provided in this section,
and a detailed discussion can be found in Refs. [64–68].
The derivation can also be made in a rather more general
way from formal scattering theory and S-matrix formu-
lation approach, see, e.g., Refs. [69,78].
In Refs. [64,65], J. Friedel showed that the difference

between the integrated density of states of the interacting
particles system, nEðxÞ, and free particles system, nð0ÞE ðxÞ,
is related to the scattering phaseshifts by

Z
∞

−∞
dx½nEðxÞ − nð0ÞE ðxÞ� ¼ 1

π

d
dE

Tr½δðEÞ�; ðB1Þ

where δðEÞ stands for the diagonal matrix of scattering
phaseshifts. The local density of states of a interacting
system, nEðxÞ, can be defined through the imaginary part of
Green’s function by

nEðxÞ ¼ −
1

π
Im½hxjĜðEþ i0Þjxi�; ðB2Þ

where

ĜðEÞ ¼ 1

E − Ĥ

refers to full Green’s function operator of an interacting
particles system, and Ĥ stands for the Hamiltonian operator
of the interacting particles system. The local density of

states of free particles system, nð0ÞE ðxÞ, is defined in a
similar way,

nð0ÞE ðxÞ ¼ −
1

π
Im½hxjĜ0ðEþ i0Þjxi�; ðB3Þ

where

Ĝ0ðEÞ ¼
1

E − Ĥ0

denotes the free particle’s Green’s function operator. The
relation in Eq. (B1) is usually referred as the Friedel
formula.
The real part (principal part) of Green’s function can be

constructed through imaginary part by Cauchy’s integral
theorem,
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Z
∞

−∞
dxhxjĜðEÞ − Ĝ0ðEÞjxi

¼ 1

π

�Z
−EL

−∞
þ
Z

∞

0

�
dϵ

R∞
−∞ dxImhxjĜðEÞ − Ĝ0ðEÞjxi

ϵ − E
;

ðB4Þ

where we have assumed that Green’s functions has a
physical branch cut along the positive real axis in complex
E plane: E∈ ½0;∞�, and an unphysical branch cut siting
along negative real axis: E∈ ½−∞;−EL�, where −EL
represents the branch point of unphysical cut. Using
Eq. (B1), we therefore find that integrated Green’s function

is related to the scattering phaseshifts by

Z
∞

−∞
dxhxjĜðEÞ − Ĝ0ðEÞjxi

¼ −
1

π

�Z
−EL

−∞
þ
Z

∞

0

�
dϵ

Tr½δðϵÞ�
ðϵ − EÞ2 : ðB5Þ

J.S. Faulkner [68] later on recognized that the relation in
Eq. (B5) is equivalent to Krein’s theorem [66,67] in spectral
theory, where − 1

π Tr½δðϵÞ� is exactly the Krein’s spectral
shift function.
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