(1) Let X_1, \ldots, X_n be a iid random sample from a distribution whose mean is μ_1 and whose known variance is σ_1^2. Let Y_1, \ldots, Y_m be a iid random sample from a distribution whose mean is μ_2 and whose known variance is σ_2^2. Assume that Y_i and X_j are independent for all i and j. Create a γ-coefficient confidence interval for the differences between the unknown means of the two distributions namely, $\mu_1 - \mu_2$.

(2) Let X_1, \ldots, X_n be a iid random sample from a distribution whose mean is μ_1 and whose unknown variance is σ_1^2. Let Y_1, \ldots, Y_m be a iid random sample from a distribution whose mean is μ_2 and whose unknown variance is σ_2^2. Assume that Y_i and X_j are independent for all i and j. Create a γ-coefficient confidence interval for the differences between the unknown means of the two distributions namely, $\mu_1 - \mu_2$.

(3) Let X_1, \ldots, X_n be a iid random sample from a distribution whose mean is μ_1 and whose unknown variance is σ. Let Y_1, \ldots, Y_m be a iid random sample from a distribution whose mean is μ_2 and whose unknown variance is σ. Assume that Y_i and X_j are independent for all i and j. Create a γ-coefficient confidence interval for the differences between the unknown means of the two distributions namely, $\mu_1 - \mu_2$. **Hint:** Estimate σ with the pooled sample variance i.e., \[\frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}. \]

(4) Let X and Y be two independent random variables with Bernoulli distributions $B(1, p_1)$ and $B(1, p_2)$, respectively. We want to find a confidence interval for the difference $p_1 - p_2$. Let X_1, \ldots, X_n be an iid random sample from the distribution of X and Y_1, \ldots, Y_m be a iid random sample from a distribution of Y. Let X and Y be independent.

(5) Let X_1, \ldots, X_n be a random sample from $N(\mu, \sigma^2)$, where both parameters μ and σ^2 are unknown. Obtain a γ-coefficient confidence interval for σ^2. **Hint:** Remember that $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$.

1
(6) Let $X_1, ..., X_n$ and $Y_1, ..., Y_m$ be two independent random samples from the respective normal distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, where the four parameters are unknown. Construct a γ–coefficient confidence interval for the ratio of the variances namely, $\frac{\sigma_1^2}{\sigma_2^2}$.

Hint: Remember that $\frac{S_1^2}{\sigma_1^2}$ follows an F distribution with degrees of freedom $n - 1$ and $m - 1$ respectively.

(7) Let $X_1, ..., X_n \sim N(\theta, \sigma^2)$. Assume that σ^2 is known. Suppose that we take a prior $\theta \sim N(a, b^2)$. Find $C = (c, d)$ such that $Pr(\theta \in C | X) = 0.95$.