Overview

- endocrine system
 - invertebrate
 - vertebrate
- endocrine glands
- hormones
 - mode of action of hormones
 - second messengers
 - gene activation
- summary

Endocrine system

- consists of endocrine glands that secrete hormones
- hormones are broadcast to all parts of the body
Hormones
- chemical secretions by a specialized endocrine structure
- metabolic effects on target structures
- effective at low concentrations
- exert their effects by:
 1. altering gene function
 2. directly affecting metabolic pathways
 3. controlling the development of specific organs or their secretory products

Early endocrine system
- in invertebrates, hormones control sexual cycles and often the shedding of eggs
- arthropods demonstrate extensive endocrine systems, which play a role in:
 - water balance
 - migration of pigments for protective discoloration
 - growth
- ex. The endocrine system of insects which undergo metamorphosis

Metamorphosis
- stages include:
 - larvae stage
 - molting stage
 - pupal stage
 - adult stage
Early role of insulin

- insulin was a primitive feeding hormone
- in most invertebrates insulin promotes food gathering
- in invertebrates still functions as a feeding hormone but in a more complex way
 - regulates carbohydrate metabolism
 - promotes the storage and utilization of carbohydrates to control sugar levels in blood

Same hormones in unicellular and multicellular organisms

- E. coli
 - insulin
- Protozoans
 - pituitary hormones

Vertebrate endocrine system

- endocrine gland functions:
 - exclusively endocrine
 - endocrine and nonendocrine
 - ex. pancreas
 - solely nonendocrine
 - ex. kidney and liver
- approximately 15 glands
 - secretions of four basic types
 - proteins
 - less complex peptides
 - catecholamines
 - steroids
Stomach
- hormone gastrin
 - stimulates gastric glands to release gastric juice

Pancreas
- dual gland → ducted (exocrine) properties and ductless functions
 - exocrine → digestive juices which reach the duodenum through the pancreatic duct
- insulin – ↓ sugar
 - made by the beta cells
- glucagon – ↑ sugar
 - made by the alpha islet cells
- somatostatin
 - made within the islet tissue in the delta cells.
 - nerve impulse transmission
 - insulin and glucagon production

Adrenals
- lies above or beside each kidney
 - arise from a different germ layer
 - surrounded by a protective capsule
Adrenal cortex

- outer layer arises from the mesoderm
- consists of three distinct layers:
 - zona glomerulosa
 - aldosterone
 - increased when blood potassium levels ↑
 - and when blood pressure in arterioles ↓
 - ex. Renin-angiotensin system
 - zona fasciculata
 - cortisol and corticosterone
 - raise blood glucose levels
 - stress in release factor
 - zona reticularis
 - glucocorticoids, masculinating androgens, and small amounts of female sex steroids
- medulla of the adrenal gland arises from the ectoderm
 - epinephrine (adrenaline) and norepinephrine (noradrenaline)

Renin-angiotensin model

Renin-angiotensin-aldosterone system

Thyroid

- arise from the embryonic gill slits
- rate at which carbohydrates are oxidized in the body and the amount of body heat produced
 - resting level of oxidation is referred to as the basal metabolic rate
- hormones thyroxin(T4) and triiodothyronine (T3)
- sexual maturation of all vertebrate species
- in amphibians → metamorphosis
Parathyroids
- parathormone (PTH)
 - regulator of calcium and phosphate levels in the blood
- parathormone acts in 2 ways:
 - release calcium into the bloodstream
 - reabsorption of calcium and excretion of phosphate

Thymus
- thymosin → induces functional maturity in lymphocytes.

Gonads
- male → sex steroids produced by the testes
 - testosterone
- female → sex steroids produced by the ovary
 - estrogen
 - progesterone
 - hypothalamus and pituitary regulate ovarian hormones
Pituitary
- known as the master gland
- consists of a posterior and anterior lobe
 - posterior lobe:
 - neuronal
 - receives, stores, and releases 2 different hormones:
 - oxytocin
 - antidiurectic hormone

Pituitary continued
- anterior lobe:
 - hormone producing structure adenohypophysis
 - primary and tropic hormones
 - ex. of primary hormones:
 - growth hormone (GH)
 - prolactin hormone
 - melanocyte stimulating hormone (MSH)
 - endorphins
 - enkephalins
 - ex. of tropic hormones:
 - thyroid stimulating hormone (TSH)
 - adrenocorticotropic hormone (ACTH)
 - follicle stimulating hormone (FSH)
 - luteinizing hormone (LH)

Hypothalamus
- a part of the brain located above the pituitary
- sensory stimuli of the nervous system are converted into hormonal responses.
Hypothalamus and pituitary

- connected with the pituitary gland
- connected to the posterior lobe by a stalk of nerves
 - oxytocin and ADH are produced in the hypothalamus and travel down the nerves to the posterior lobe for storage and release by nerve impulses
 - it is connected by a capillary system

Hypothalamus and pituitary interaction

- releasing hormones
 - corticotropin releasing hormone
 - thyroid releasing hormone
 - leutinizing hormone releasing hormone
 - follicle stimulating hormone releasing hormone
 - growth hormone releasing hormone
 - growth hormone inhibiting releasing hormone
 - prolactin release-inhibiting hormone
 - prolactin releasing hormone

Pineal gland

- melatonin
 - circadian rhythms
Damaged tissue

- acts as an endocrine gland when it releases histamines
 - histamines relax the muscles of the blood vessels
 - increases blood vessel permeability allowing the elements of the immune system to reach the injured site

Prostaglandins

- group of chemicals → fatty acids that resemble hormones in function
- produced by most cells of the body
- seven broad classes:
 - PGA - known to reduce blood pressure and may act directly on vascular smooth muscle.
 - PGD - involved in vasodilatation, stimulate the increase of cAMP and inhibit the aggregtion of platelets.
 - PGI - same as PGD
 - PGE - influence acid secretion in the stomach and have been implicated in fever reactions
 - PGF - involved in responses of the reproductive tract and have been used to induce labor
 - PGG
 - PGH

Mode of action of hormones

- exert effects on target tissues directly or indirectly by:
 - alteration of metabolic activity of specific cells
 - turn genes on or off or to modulate their activity
- to carry out their function hormones must:
 - either penetrate the cell
 - attach to cell membrane
- hormone methods of cell interaction:
 - pass directly across boundary and internal membranes of the cell
 - pass along preexisting channels
 - create new channels
Second messengers

- many hormones attach to specific receptors on the cell membranes of target cells and invoke the aid of a second messenger
- second messenger is the "accomplice" to a hormone in the cell cytoplasm
 - ex. of second messengers
 - calcium ions
 - cyclic AMP (cAMP)

Second messenger model

Gene activation by a hormone
Summary - The Endocrine System

Hypothalamus
- Regulates hunger, thirst, and sleep
- Controls body temperature

Pancreas
- Helps regulate blood glucose levels

Parathyroid
- Regulates calcium levels in the body

Thyroid
- Produces hormones for metabolism

Adrenal Glands
- Responds to stress
- Produces hormones for energy production

Estrogen
- Influences the menstrual cycle and development of reproductive organs

Metabolism - The conversion of nutrients into energy and building materials for repair of body tissues

Prostaglandins
- Inhibitors of blood clotting