INTRODUCTION TO
EXPERIMENTAL RESEARCH

Inferential Statistics

In the previous two chapters we have seen how the sample size, mean and standard
deviation provide a shorthand description of data that is normally distributed. These
descriptive statistics allow comparisons to be made between different sets of data in
terms of their typical scores and how the data is distributed. However, researchers
often not only want to describe differences and similarities between sets of data, but
also want to make inferences. For example, they may wish to test whether any
observed differences reflect the impact of some causal factor or test to see if they can
infer a particular sort of relationship between the variables that have been measured.
To illustrate this, imagine that it is observed that a group of people who undertake a
particular set of exercises have lower mean systolic blood pressure than those who do
not. A researcher may want to know if it can be concluded that this observed differ-
ence is a product of the exercise training rather than just a product of the variability
found in systolic blood pressure within the general population. Or, again, if a
researcher observes that there is a tendency for those who are more perfectionist also
to be more anxious before examinations, the researcher may want to know if this rela-
tionship is due to this personality disposition or just a coincidence. While statistics
can aid in this decision making it is the logic that informs how the data is collected in
conjunction with the statistics that justifies any claim for there being a causal rela-
tionship. This is most simply illustrated in the principles of experimental research.

A Brief Introduction to Experimental Research

To understand what is involved in testing predictions conceming data it is worth
remembering that any human enquiry is concerned with gathering information to
enhance understanding. An experimental approach is just one method, amongst many,
of gathering data. For example, information can also be gathered through surveys, psy-
chometric testing or case studies. However, an understanding of experimental research
highlights both the role of statistics in aiding decision making and their limitations.
In an experiment the aim is to test a hypothesis. A hypothesis is a testable state-
ment that predicts the relationship between two types of variables. These variables
are termed the independent and the dependent variables. The independent variable
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is the one that is manipulated and the dependent variable is the one that is measured.
For example, if it is predicted that a certain nutritional drink influences performance
on an endurance activity, then the consumption of the nutritional drink is the inde-
pendent variable and the participants’ performance is the dependent variable. The
experimenter would then measure the dependent variable (i.e. performance) under at
least two conditions or levels of the independent variable. These two conditions
might comprise a control group (e.g. performing without the nutritional drink), and
an experimental group (e.g. performing with the nutritional drink).

Of course, endurance performance is a product of many variables other than the
type of drink a participant may have consumed. To rule out the effect of these other
variables participants must be tested in a situation where all these other variables,
which are known as irrelevant or extraneous variables, are held constant. These
extraneous variables are most often to do with aspects of the situation or the partici-
pants that have the potential to influence the dependent variable.

The control of situational variables, such as performance conditions, noise and time
of day, etc., can generally be achieved with careful experimental design. Advertise-
ments for washing powders provide a simple example of this procedure. Advertisers are
usually careful to show that identically soiled clothing is washed in two identical
machines and that the only variable that does differ is the washing powder. Sometimes
extraneous variables can be a product of the testing procedure itself, for in the above
example concerned with a nutritional drink, the testing of the participants has the poten-
tial to produce dehydration. If the control group does not have a drink this effect will
be larger for this group in comparison with the experimental group. Therefore if the
dehydration of the participants in the control group is thought to be a design problem
then this group might be given a volume of water equal to that of the nutritional drink.

The other major type of extraneous variables reflect individual differences in
participants, consequently they are known as participant variables. To illustrate these
let us return to the example with the washing machine advertisement. If two articles of
clothing are of different levels of cleanliness prior to washing, then any difference in
cleanliness after washing may be a product of these original differences rather than the
washing powders being tested. In the washing of clothes a soiled garment can be torn
in half and one half put in each machine but with human participants individual
differences are more difficult to eliminate. The most successful method is to adopt
what is known as a repeated measures design. In this design the same person is
measured on repeated occasions. On each occasion the participant is subjected to a
different level of the independent variable. In the context of the previous athletic exam-
ple concerning the impact of a nutritional drink on endurance performance, this would
mean that participants may first perform after consuming a drink of water and then be
required to perform again after consuming the nutritional drink. Any differences
observed in the dependent variable of performance under the two conditions cannot
then be a product of participant variables as the same individuals have been used in
both of the different conditions.

Unfortunately this strategy can introduce other confounding factors such as order
effects resulting, for example, from participants being exhausted, bored or having learnt



42 DOING STATISTICS WITH SPSS

from engaging in the activity in the previous condition. If these effects are symmetrical
in that they are the same whichever order the individual is tested in, then counter-
balancing may control for them. For example, if there are two conditions then half the
participants are tested in one condition first and the other half in the other condition first.
In the context of the previous example this would mean that half the participants would
first run after consuming the nutritional drink and then run again after the drink of water,
whilst the remaining participants would perform in the opposite order.

If the order effects are not symmietrical then they cannot be effectively counterbal-
anced and a different strategy has to be adopted to control for individual differences.
One such strategy to overcome this problem is to employ a matched pair design. In
this design different participants are selected to perform under the two or more levels
of the independent variable but they are matched in pairs across the conditions on the
important individual difference, for example running ability, or body mass. This does
not mean that the individuals within each group have to be similar, rather each partici-
pant in one condition has to have a matched participant in the other condition. For
example, there can be a fast, medium and slow runner in one condition as long as there
is a fast, medium and slow runner in the other condition(s). This can be a time-
consuming procedure because participants have to be pre-tested on the variables of
interest before they can be matched. Of greater importance is the fact that the assump-
tion regarding the relevant variable(s) for matching the participants may be incorrect.
For example, they may have been matched on skill when physical fitness is the impor-
tant factor upon which matching should take place. Unless the assumption in the match-
ing forms part of the hypothesis, as it does for example in many studies of intelligence
and personality in twins, then the researcher cannot be confident that the correct factor
has been chosen. Later on in this chapter the importance of this will be highlighted. It
will be noted that the statistical tests that are employed to examine differences between
experimental and control groups are exactly the same for data produced by a matched
pair design as those that would be employed to data from a repeated measures design.
These tests assume that any differences in the groups of data are not a product of indi-
vidual differences. Unfortunately, if participants have not been matched on the correct
variable(s) then any observed differences could be the product of individual differences.

- An alternative solution is to adopt an independent groups design in which the
participants are randomly allocated to the various levels of the independent variable.
Random assignment means that each participant has an equal chance of entering any
group. The logic of this method accepts that there are individual differences but argues
that these differences are distributed across the two or more groups by chance. This
random allocation means that it is unlikely that there will be any systematic bias in any
group. For example, it is most likely that high- and low-fitness participants will be
more or less evenly split across two groups and very unlikely that all high-fitness
participants will be in one group and low-fitness participants in the other group. The
analysis of data from an independent group design employs different statistical tests to
those employed for data collected by means of repeated measures or matched pair
designs. These tests recognise that the distribution of individual differences such as fit-
ness across the two groups may not be identical and therefore variability within each
group is taken into account in the test design. This will be explained in more detail later.
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Having hypothesised a relationship between the independent and dependent
variables, and chosen a design to control for extraneous factors, the researcher can
now collect the data. The data gathered is then subjected to the appropriate statistical
analysis. As discussed later in this chapter, this analysis measures the precise prob-
ability of getting the observed differences in the dependent variable under the
various levels of the independent variable by chance. If there is a relatively small
probability that the observed differences occurred by chance, usually less than 5%,
then the logic of the experimental design dictates that we attribute the difference to
the independent variable. That is, the decision is that there is a causal relationship
between the independent and dependent variables. To understand this process further
the following section explores the logic of statistical inference in more detail.

The Logic of Statistical Inference

In an experiment, a prediction is tested by manipulating the independent variable and
measuring changes in the dependent variable while attempting to control extraneous
variables. This provides at least two sets of data, one from the control group and one
from the experimental group. The decision to be made is whether there is a signifi-
cant difference in the two sets of results that can be attributed to the influence of the
independent variable, or whether the difference is due to irrelevant extraneous vari-
ables. Thus, statistical testing leads to inferences being made from the data as to the
relationship between the variables.

What is meant by the word ‘significant’ above? To explain this term, imagine that
various weights are put on a mechanical scale and the relationship between the size
of these weights and the movement of the pointer is observed. The causal relation-
ship between these two events can be explained by an understanding of the mechan-
ics of the scales. If such an explanation is insufficient the scales can be opened up
and the physical relationship between the weights and the pointer movement
observed. But in an experiment concerning the effect of a nutritional drink on per-
formance, the human body cannot be ‘opened up’ in the same way as the scales, nor
can a complete explanation of the ‘mechanisms’ at work be given with the same
degree of precision as with the scales. All that can be done is to attempt to keep the
irrelevant variables constant and manipulate the independent variable (e.g. the nutri-
tional drink). If a corresponding change in the dependent variable (e.g. performance)
is now observed then the logic of the experimental design which has controlled for
extraneous variables leads to the inference that a causal relationship exists between
the nutritional drink and performance.

Unfortunately, all the irrelevant variables can never be kept absolutely constant and
thus it can never be proved beyond doubt that chance was not responsible for any
changes in the independent variable. Here the word ‘chance’ is being used as shorthand
for irrelevant or extraneous variables. However, by conducting statistical tests on the
data, the likelihood that any observed difference is due to chance can be measured. For
example, it may be found that the amount of variation in performance between those
ingesting the nutritional drink and those who did not ingest the nutritional drink is
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likely to occur 50 times out of 100 by chance. If this were the case then it would be
difficult to credit the nutritional drink as being responsible for the variation. If,
on the other hand, the probability of the variation being due to chance was 1 in a
100 then the decision might very well be made to attribute the variation to the inde-
pendent variable, namely the nutritional drink, for this explanation would be correct
99 times out of 100. The point at which it is decided to reject the chance explanation
and attribute responsibility for the difference to the independent variable is called the
significance level. The significance level is also known as alpha (o) for reasons
which will become clear later. Most researchers generally choose a significance level
of 0.05. That is, as long as the observed differences would only occur by chance 5
times or less out of 100 then the researcher will reject the chance explanation for the
observed findings. This is because 95 times out of 100 the observed differences
would be due to the experimental manipulation of the independent variable. To some
extent the adoption of an o equal to 0.05 (or 5% significance level) is an arbitrary
matter and in certain cases one might be far more conservative and choose a level of
0.01 where the probability due to chance is 1 in 100.

Hypothesis Testing

This process of rejecting or accepting the chance explanation is known as hypothe-
sis testing. In the process of statistical inference the researcher is deciding whether:

1. the differences arise because of purely chance fluctuations in the two groups of
scores; or
2. the differences are caused, at least in part, by the independent variable.

The first of these is termed the null hypothesis and the second is called the alter-
nate or experimental hypothesis. Thus, in an experiment concerning a nutritional
drink and performance, the null hypothesis would be:

H, There will be no significant difference between the mean
performance scores of the experimental and control groups.

The alternate hypothesis might state:

H, There will be a significant difference between the mean
performance scores of the experimental and control groups.

If, as in the above experimental hypothesis, the direction of the difference is not
stated then it is known as a two-tailed hypothesis. However, if the alternate hypothe-
sis states the direction of the difference in the two groups of scores, for example the
experimental group will score less points for their performance than the control
group, then this is known as a one-tailed hypothesis.
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Unless there are good reasons for doing otherwise, a two-tailed hypothesis should
be postulated. One-tailed hypotheses are appropriate when a theoretical perspective
based on previous research would suggest that a particular difference is expected or
when there is no logical way in which a difference could occur in a direction other
than the one predicted.

Type | and Type 1l Errors

If a significance level of 0.05 is chosen, it is important to realise that on 5% of occa-
sions the observed difference may occur by chance. This means that if the null
hypothesis is rejected then the researcher can be 95% confident that the difference
found is not the product of chance and there is only a 5% probability of making a
mistake. Making the mistake of rejecting the null hypothesis when it is in fact true
is known as committing a Type I error. The probability of making such a mistake
is known as the alpha level and is equal to the significance level adopted.

An obvious solution to the problem of committing a Type I error is to reduce the
significance value to, say, 0.01. This would mean that a Type I error would be
expected only one time out of a hundred experiments. However, this would result in
an increased number of occasions on which the null hypothesis is accepted when it
is in fact incorrect. This is known as a Type II error. The probability of committing
a Type 1l error is referred to as the beta level (B) and its probability is much more
difficult to assess than the alpha level. In spite of this difficulty, it can be seen from
the above that a significance level of 0.05 is a compromise that attempts to minimise
the probability of committing either of these two types of errors. Another way of
expressing the connection between these two errors is in the form of the two scales
shown in Figure 4.1.

From these scales it can be seen that in employing a 5% significance level the
researcher is accepting that there is a 5% probability that H,, is correct and a 95%

Scale indicates the probability that H, is correct
Sig. level
Decreasing probability of committing a Type | error -
Scale indicates the probability that Hy is incorrect
L0 TP 95%....cciienins 100%

€ Decreasing possibility of committing a Type Il error

Figure 4.1 The relationship between significance level, confidence level
and Type | and Il errors
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probability that H, is incorrect. It can also be seen that any attempt to reduce the
probability of committing a Type T error by reducing the significance level will result
in an increase in the possibility of committing a Type 1I error.

Statistical versus Practical Significance

When conducting research that involves statistical testing there is a great temptation
to suggest that statistical significance automatically implies a practical significance.
For example, imagine we found that the mean age at death for those who smoked
30 cigarettes per day was 65 and for those who smoked 40 cigarettes per day it was
63. Also imagine that this difference of two years was statistically significant at the
p <0.05 level. However, is this a practically significant finding? To answer this ques-
tion this difference needs to be examined in the context of the greatly reduced life
expectancy of both groups compared with non-smokers whose mean age at death
was found to be 78 years. Or, again, imagine that heavy users of digital mobile
phones have a 20% increased probability of developing a brain tumour and that this
increase is statistically significant. This sounds very worrying. However, if the prob-
ability of developing a brain tumour in the wider population is 5 in 100,000 then this
research would suggest that the risk for mobile phone users is raised to 6 in 100,000.
You may feel that the practical implications of this statistically significant increased
risk are not sufficient to deter you from continuing to have the convenience of mobile
telephony. The distinction between practical significance and statistical significance
is very important and the researcher must be very careful to restrict the term signi-
ficance to its statistical denotation when writing up experimental reports.

Hypotheses Concerned with Differences and Relationships

Each of the examples of hypotheses given so far has included the word ‘difference’.
For example, a null hypothesis might state that there will be no significant difference
between the performance scores of the experimental and control groups. This hypo-
thesis predicts that the means of the two groups will not be significantly different.

Sometimes, however, the focus of interest is not in detecting group differences but
rather in identifying relationships between variables. For example, our null hypo-
thesis might predict that there will be no significant relationship between the length
of the training time and the performance scores. This null hypothesis predicts that
knowing how much someone trains will not provide any information about how well
they perform.

The distinction between hypotheses concerned with relationships and hypotheses
concerned with group differences is very important. This is because they reflect the
type of question the researcher asks, which in turn will often influence the way that
data is collected. Questions concerned with differences usually employ data collected
through experimentation involving the manipulation of one or more independent
variables. If through the use of the appropriate statistical tests a significant difference
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is found then the conclusion may be drawn that there is a causal relationship between
the independent and dependent variables.

In contrast, research focusing on relationships often involves data collection
through survey methods in which no manipulation of independent variables and
limited control of extraneous variables have taken place. Attempts to answer ques-
tions concerned with relationships employ different statistical tests to questions
focusing on differences. If through the use of the appropriate statistical tests a sig-
nificant relationship is found then the conclusion that there is a causal relationship
between the variables concerned may not automatically be drawn, for the lack of
control and manipulations of extraneous and independent variables make it difficult
for the researcher to rule out the possibility that some other variable caused the
observed significant relationships. The distinction between questions that focus on
differences and questions that focus on relationships is one very important factor in
determining the type of statistical analysis to be employed and the types of conclu-
sion that can be drawn.

An introduction to statistical tests concerned with relationships between variables
will not be presented until Chapter 10. However, it is important to appreciate that
whenever a significant difference between two variables exists there will always be
a relationship between the two variables.

Samples and Populations

It was stated earlier that the problem facing the researcher when analysing data was
one of deciding whether there is any significant difference in the results that can be
attributed to the influence of the independent variable, or whether any difference is
due to irrelevant variables. Before examining the statistical techniques used to make
these decisions it is necessary to understand some of the constraints within research.

When experiments or surveys are undertaken it is not usually possible to employ
the total population as participants and therefore the researcher relies on data col-
lected from a sample of this population. These two words, population and sample,
represent very important ideas in statistics. The term population refers to all possible
objects of a particular type. Such types might be tennis players, cricket bats or char-
acteristics such as fitness levels. Populations are so large, in fact they may be infi-
nite, that a researcher never has access to them and instead often takes a sample of
observations from the population. Unless the sample is representative of the popula-
tion of interest then findings cannot be extrapolated from the sample and applied to
the larger population.

To illustrate this imagine that a researcher at a university wanted to understand how
first-year undergraduate students perceived and participated in leisure activities. For
obvious practical reasons the questionnaire could not be administered to all under-
graduate students in the country of interest so instead a sample of those students has to
be employed. Unfortunately, were the researcher to take the most convenient course
and administer the questionnaire to all students at his/her own university this would not
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provide a representative sample. This is because students attending any one particular
institution are a self-selecting group that are unlikely to represent a cross-section of the
student population. If, instead, the researcher took a random sample of students from
every institution with undergraduates, then as every undergraduate student in the
country had an equal chance of being selected, this would usually provide a represen-
tative sample. If the researcher found that the mean time spent on leisure activities was
32 hours per month, then he/she would be justified in inferring that this was an accu-
rate estimate of the average amount of leisure time per month engaged in by the
student population. If this process was repeated several times the researcher would
probably find a slightly different mean value each time as a result of random variations
in the process of sample selection. The actual mean of the country’s undergraduate
population would lie somewhere close to the average of this series of sample means.
This is because the means of the samples will be normally distributed around the
population mean. Thus, whenever two samples are taken from the same population
we would expect the means to be different. This is a very important point whose
statistical implications will be explored in more detail in the next chapter.

A clue to this importance can be found by returning to the experiment concerning
a nutritional drink and performance. Here, one might have one set of performance
scores from a control group who just drank water and another set of performance
scores from the experimental group who had taken the nutritional drink. If the means
of these two data sets are different what are the possible explanations? From the
previous discussion on samples it follows that any observed difference in means
could be found because the means from any two samples of a population will often
produce different results. This explanation would suggest that the null hypothesis is
correct. Alternatively it could be that the means are different because the samples are
drawn from two different populations. If this is the case then the experimental
hypothesis is correct. The experimental hypothesis implies that one set of perfor-
mance figures are produced by a population that performs without the nutritional
drink and another set by a population that performs with the nutritional drink and
these two populations have different performance statistics.

Which of these explanations is correct? The various statistical tests outlined later
" on in this manual are designed to answer this question. All the tests do this by work-
ing out the probability that the results could be obtained from the same population.
If this probability is equal to or less than 0.05, then there is less than a 5 out of 100
chance that these results could be obtained from the same population. In this case the
researcher would reject the null hypothesis and accept the experimental hypothesis.
Before we attempt to understand how these tests calculate this probability we need
to know first how to select the appropriate test.

Selecting the Appropriate Statistical Test

There are four major factors that determine the correct test for any particular set of
experimental data. These are:
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Table 4.1
Type of design

Type of test Type of data Related samples Independent design
Parametric Interval t-test for t-test for

paired samples independent samples
Non-parametric Ordinal Wilcoxon test Mann—Whitney test

Nominal Sign test Chi-squarc test

1. What is the research question?
2. How many dependent and independent variables are there?
3. Was the data gathered by means of an independent, related or mixed design?
4. What type of scale was used to measure the variables?

In Appendix 2 there are two tables that illustrate how these four factors combine
to determine the correct choice of test. However, this section concentrates on points
3 and 4 above and their implications for choosing among a limited range of statisti-
cal tests. Before examining what this means in detail note that Table 4.1 illustrates
how these two factors influence the choice of two categories of statistical tests.

In looking at this table it is important to remember that the term related samples
refers to repeated measure and matched pair designs and the term independent
samples refers to the independent group design. If you are not clear about these
terms you will find a reference to them in the second section of this chapter.

In the table the terms parametric and non-parametric tests are introduced. These
refer to two basic types of statistical tests that make different assumptions about the
data being examined. All that can be noted at present is that the choice of tests is
determined in part by how the data is collected and what sort of data is collected.

Parametric Tests

Parametric tests make three basic assumptions:

1. It is assumed that each sample of scores has been drawn from a normally
distributed population.

2. These samples are assumed to have the same variance.

3. The dependent variable is assumed to have been measured on an interval scale.

The following section examines each of these assumptions in more detail.

Checking the Assumption of a Normal Distribution

Unfortunately, it is difficult to prove that a particular sample is drawn from a
normally distributed population. Previous research can be examined to see if the data
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previously formed a normal distribution or the existing data could be plotted in the
form a histogram to see if it looks like a normal distribution. However, neither of
these procedures is very precise. Therefore, to have any measured confidence in our
decision we need to look for statistical alternatives. Two measures that are relevant
are the concepts of skewness and kurtosis. You may have noted already from your
printout of Exercise 3.2 that the Explore option provides a measure of these statis-
tics. Each of these concepts will now be dealt with in turn.

Skewness

Skewness reflects the existence of extreme scores at one end of the distribution. A

skewness of zero means that the distribution is symmetrical. Using the z-table (Table 3.1)

it is possible to get an exact measure of skewness and to assess the probability that

the distribution is symmetrical. Whilst SPSS will produce this value it is important

to understand how it was obtained so that its significance can be interpreted.
Skewness is computed by employing the following formula:

Skewness =

Here z refers to the distance of each score from the mean measured in units of
standard deviation. By cubing this value the sign, whether it be positive or negative,
will remain the same but the deviation of extreme scores will greatly increase in
magnitude. For example, 1 cubed is 1, 2 cubed is 8 and 3 cubed is 27. The reason for
dividing by r is to find the average of the cubed deviations and therefore to control
for the sample size.

The larger the value obtained from this calculation the greater the skewness. The
particular meaning of any value obtained by this calculation is not obvious as
theoretically it could be any value between zero and infinity. What is needed is a
scale so that the probability that the distribution is skewed or not can be assessed.
Without wishing to pre-empt a later discussion on sampling error, the estimate of
skewness within the population is based on the sample of data. This sample may not
be representative of the population as it may contain some error. To assess the signi-
ficance of the value of skewness the ratio of the skewness obtained over the error in
its measurement is calculated. This error is known as the standard error for skew-
ness. For moderately large samples this standard error for skewness can be computed

by the following formula:
/6
SEgkew = 4/ —
n
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Table 4.2 Descriptives

CLASS Statistic Std. Error
Grades | Professor’s Class Skewness 2.276 491
Graduate Student's Skewness 270 491
Class

If the value of skewness is divided by this error the result is a z-value for skewness
that can be interpreted using the standard z-tables:

o = 221
RV (7/D)

Note from the z-table (Table 3.1) that with a move of 1.96 standard deviations away
from the mean an area of 2.5% of the normal distribution curve is cut off. To check
that a distribution is neither positively nor negatively significantly skewed (a = 0.05)
both ends of the normal distribution must be examined. Therefore as long as the
value of z,, is less than £1.96 there is 95% confidence that the population distri-
bution is not positively or negatively skewed. To illustrate what this means in
practice consider an example.

The output from the SPSS exercise in the previous chapter includes the informa-
tion given in Table 4.2. Note that if the standard error for skewness is calculated
according to the previously given formula the value 0.562 will result and not the
value 0.491 shown in Table 4.2. This is because that formula can only be applied to
moderately large samples. Also note that for ‘Professor’s Class’ if the skewnes
statistic is divided by the standard error for skewness the result is 4.64. As this is
much larger than +1.96 the conclusion is that these ‘Professor’s Class’ scores are
significantly skewed and therefore the distribution significantly deviates from
normal. Is this also true for the ‘Graduate Student’s Class’?

Kurtosis

Kurtosis refers to the peakedness of the curve: that is, is it a flat curve or does it have
a sharp point? The procedure for working out the kurtosis is very similar to that
employed when working out skewness. The formula is as follows:

4
Kurtosis = (ZZ ) -3
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Note that here z is raised to the power of 4. This means that, once again, extreme
scores will be greatly increased, but this time the signs will all be positive. For exam-
ple, —1 raised to the power of 4 is |, —2 raised to the power of 4 is 16, and 3 raised
to the power of 4 is 81. The —3 is included in the above kurtosis equation because
without it, if there were no kurtosis, this formula would produce a value of 3. There-
fore, 3 is subtracted so that if there is no kurtosis a value of zero is produced.

The next step is to work out the likely error in estimating the kurtosis within the
population from the sample and this is done as follows:

24
SEkur[ = 7

Then to compute a z-value for kurtosis we divide the kurtosis score by the above
error term:

kurtosis

Zkurt = 724—7;

As with skewness, a value between =+ 1.96 suggests with at least 95% confidence that
the distribution is normal. If the value obtained is positive, then it indicates that the
curve is more peaked than normal (i.e. leptokurtic), whilst if it is negative, then the
curve is flatter than normal (i.e. platykurtic). Again, looking at the SPSS exercise in
the previous chapter may be helpful.

Looking at the output in this exercise, note that it includes the information in
Table 4.3. Using the ‘Professor’s Class’ values in the table, the kurtosis statistics
divided by the standard error for kurtosis produce the value 5.93. As this is much
larger than +1.96 it would be concluded that these ‘Professor’s Class’ scores are sig-
nificantly kurtotic, that is the distribution significantly deviates from normal. Is this
also true for the ‘Graduate Student’s Class’? Now look at the two histograms from
the output of the previous SPSS exercise and see if this graphical representation
concurs with this statistical interpretation.

By using these two measures of skewness and kurtosis the researcher can decide,
with a precise level of confidence, whether the data conforms to the required
assumption of being normally distributed.

Table 4.3 Descriptives

CLASS Statistic Std. Error
Grades Professor’s Class Kurtosis 5.644 .953
Graduate Student’s Kurtosis .236 .953
Class
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Checking the Assumption of Equal Variance

The assumption of equal variance is also known as the homogeneity of variance
assumption. Some indication of the equality of the variances of two sets of data can
be obtained by looking at a graphical representation such as a boxplot, an example of
which was provided in Chapter 2. Although it cannot be proved that two samples have
equal variance, it can be determined whether they are significantly different. SPSS
employs a variety of procedures to test for equivalence of variance and these tests will
be discussed as they become appropriate for particular statistical techniques.

Checking the Assumption of Level of Measurement

In Chapter 2 it was noted that measurement is concerned with assigning numbers to
observations. How numbers are assigned to observations determines the arithmetic
operations that are permissible. The ways in which numbers are assigned in social
research can be classified into three different levels. These are:

1. Nominal data. Nominal means in name only. Here numbers are used simply to
identify the groups or categories to which various objects belong. For example,
the number 1 could be assigned to windsurfing, 2 to dinghy sailing and 3 to land
yachting. No numerical operations can be carried out with these numbers
beyond noting the frequency with which each occurs. These relative frequencies
allow the mode to be identified as an indication of the typical score.

2. Ordinal scale. In an ordinal scale objects are not only in different categories,
but these categories stand in some relation to each other; for example, students
rank their preferences in order for different sorts of leisure activities. However,
there is no reason for assuming that the difference between the items ranked first
and second is the same as that between those ranked second and third etc. As the
data stands in an ordered relationship to one another, the median is used to iden-
tify the typical score.

3. Interval scale. The relationship between the objects is measured on a scale in
which all the intervals are equal. For example, if performance is measured in
terms of time then the difference between 28 seconds and 29 seconds is the same
as that between 34 and 35 seconds, namely 1 second. This system of measure-
ment allows for the mean to be calculated as the indicator of the typical score.

Because parametric tests are used to examine for significant differences between
means, they require that the dependent variable be measured on an interval scale.

Non-parametric Tests

In contrast to parametric tests, non-parametric tests make very few assumptions.
In fact they make few assumptions about the distribution of the data and they do



54 DOING STATISTICS WITH SPSS

not assume homogeneity of variance in the samples. The only assumption that is of
concern here is to do with the scale on which the dependent variable is measured. Look-
ing at Table 4.1 above it can be seen that some non-parametric tests require that the
dependent variable is measured on an ordinal scale whilst others require nominal data.

As non-parametric tests make so few assumptions compared with the correspond-
ing parametric tests then why use parametric tests? The answer is because parametric
tests are more likely to detect a significant difference between two sets of scores than
their non-parametric equivalent. This is because more information is available to
parametric tests than non-parametric tests. For example, whereas a non-parametric
test based on ordinal data takes into account the rankings of the participants’ scores,
a parametric test would not only have this information but also the magnitude of
the intervals between the rankings. It is for this reason that parametric tests are more
powerful than their non-parametric equivalent. Power in this context is defined as
the probability of rejecting the null hypothesis when it is false and is defined in the
following way:

Power = 1 — probability of Type Il error = 1 -

Although parametric tests make the three assumptions listed above, they will still
provide a valid result even when some of these assumptions are not perfectly met.
Tests that possess this characteristic are described as robust and the reason for this
quality will be explained later.

Finally, although non-parametric tests are not as powerful as parametric tests,
increasing the sample size can increase their power to that approaching their para-
metric equivalents.

Summary

Statistics are employed to enable the researcher to draw inferences from samples of
a population about whether there are real differences between sets of scores or real
-relationships between variables. In experimental research, as the design should have
controlled for most of the extraneous variables, any observed differences in the
dependent variable may be attributed to either changes in the independent variable
or error in the measurement due to factors such as individual differences. In deciding
whether to attribute these changes to the independent variable statistics are employed
to measure the probability of obtaining the differences by chance. This chance expla-
nation is known as the null hypothesis and it postulates either that no relationship
exists between the variables or that no differences exist between the sets of scores.
If the probability of obtaining the observed differences by chance is equal to or less
than the established significance level (e.g. 0.05) then the decision is made to reject
the chance explanation and accept the alternative that a true difference exists. If a
criterion of 0.05 is employed in rejecting this chance explanation then there is
always a 5% probability that the wrong decision has been made. This is known as a
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Type 1 error. Alternatively, if the probability was greater than the criterion and the
null hypothesis was accepted by mistake, this is known as a Type II error. Even if the
researcher decides that there is a real statistical difference between sets of scores this
does not mean that this difference is of any practical significance.

The calculation of this probability for accepting or rejecting the null hypothesis
varies depending upon the statistical tests. The appropriate test is determined by the
research question, the number of dependent and independent variables, the experi-
mental design and the type of scale used to measure the variables. All of the tests
covered in this book are known as parametric tests and these tests make three
assumptions. They assume that each sample of scores has been drawn from a normal
population, that these samples have the same variance and that the dependent vari-
able is measured on an interval scale. The concepts of skewness and kurtosis were
introduced as statistical means of evaluating the normality assumption.

EXERCISE 4.1 TEST SELECTION

Below are listed a series of hypothetical situations. In each case indicate which test
the researcher should use and why. While this task is made easier if you are familiar
with the tests, it is still not that difficult to make the appropriate choice if you ask
yourself two things:

A. What experimental design has been adopted?
B. What sort of data has this research generated?

Having answered these questions use Table 4.1 to identify the appropriate test. To
keep matters simple, assume that the homogeneity of variance assumption is met and
that the data is normally distributed.

1. Which statistical test could be used to test the hypothesis that there is no differ-
ence in the number of goals scored by the top 22 first and second division goal
scorers? Explain your choice.

2. A geographer who was interested in the apparent reduction of rainfall in East

Anglia compared the rainfall in 1991 with that of 2001.
Which statistical test should she use and why?

3. An ecologist predicted that humidity would influence the amount of time spent

foraging by woodlice. He set up an experiment in which a sample of 100
woodlice was randomly assigned to one of two humidity conditions. He then
observed how much time they spent foraging over a 24 hour period. The humid-
ity conditions were then reversed for the two groups and the foraging behaviour
was once again observed for 24 hours.

Which statistical test should he use to test his hypothesis? Explain the reasons
for your choice.
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A sociologist was interested in exploring whether there was any association
between political choice and religious affiliations. She set up a survey of a
representative sample, noting on a tally chart respondents’ religion, and which
party they usually voted for.

Which statistical test should she use and why?
A psychologist wished to test the hypothesis that the vigorousness of initiation
procedures does not influences the degree of affiliation to a group. He per-
suaded a local employer to assign applicants randomly to one of two methods
in selecting staff. One method lasted 30 minutes and the other lasted one day.
Ten staff were selected from each group of applicants, the actual selection
being based on 30 minutes of testing which was common to both groups. Later
the successful applicants were asked to rate the quality of the organisation’s
work on a scale of 1 to 10.

What statistical test would be used to test this hypothesis and why?
A sociologist wanted to compare the career aspirations of children from
working class and professional backgrounds, so 85 ‘working class’ children
and 77 ‘professional’ children were randomly selected from a group of homo-
geneous intellectual capacity. The aspirations of each child were rated by an
independent assessor on a scale of 1 to 10 (1 = unskilled, 10 = high-status
profession).

How would one test the hypothesis that the children of parents from the two
occupational groups do not have different career aspirations?
A newly discovered apple is delicious in flavour. It was decided to test its yield-
ing capacity by planting the new apple adjacent to a standard apple in eight
orchards scattered about a region suitable for the cultivation of both apples.

How would one test for a significant difference between the yielding capa-
city of the two varieties of apple trees?
An historian was interested in changes in the age distribution of a population as
a consequence of the Black Death. Focusing on two villages that were matched
for size, population structure, etc., before the plague, she noted that one experi-
enced the plague and other did not. She then examined the appropriate census
data to see if there was any difference in the number of people aged over 18.

What test could she use to see if there was a difference in the structure of the
population after the plague? Explain your choice.
A film on the hazards of smoking was shown to 800 smokers. One week after
seeing the film 28 out of the 300 women smokers and 32 of the 500 men
smokers were still not smoking.

What statistical test could be used to test the association between the sex of
the participants and giving up smoking?
A researcher was interested in whether a particular film on AIDS would influ-
ence attitudes towards ‘safer sex’. The attitude of a representative sample of
students was assessed on a seven-point scale before and after viewing the film.

What test could one use to see if there was a difference in their attitudes on
these two occasions?
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"EXERCISE 4.2 USING THE NORMAL
"DISTRIBUTION |

This is another exercise that employs the concepts introduced in Chapters 2 and 3. Tt
is included here because a sound understanding of descriptive statistics and the
normal distribution is essential for anyone who wishes to employ statistical tests.

1.

If the mean amount of beer drunk by male students is 15 pints per week and the
standard deviation is 3 pints, then:

(a) What percentage of students consume more than 22 pints per week?

(b) What amount of beer do more than 75% of students consume per week?
(c) What percentage of students consume less than 7 pints per week?

(d) What percentage of students consume between 10 and 20 pints per week?
If 40% of students spend more than 20 hours per week reading and the standard
deviation is 6 hours per week, then:

(a) What is the average amount of time spent reading?

(b) If the university expects students to read for 30 hours per week, what
percentage of students fulfil this requirement?

In a population of 230,000 students, the mean debt that they have accumulated
by the time they graduate is £6400 and the standard deviation is £1600.

(a) How many students graduate with a debt greater than £10,000?

(b) How many graduate with a debt of less than £1000?

(¢) How many graduate with a debt of between £4000 and £8000?



