Some open problems in topological groups

- Javier Trigos-Arrieta
- California State University, Bakersfield
- Spring Topology and Dynamics Conference 2006
- University of North Carolina at Greensboro
- Greensboro, North Carolina
- March 23, 2006
Disclaimer

- This is
Disclaimer

- This is NOT a power point presentation.
Tychonoff, \mathbb{T}, G

- All topological groups and spaces are Tychonoff.
Tychonoff, \mathbb{T}, G

- All topological groups and spaces are Tychonoff.
- $\mathbb{T} := \mathbb{R}/\mathbb{Z}$. As a model for \mathbb{T} we take

$$\left(\left(-\frac{1}{2}, \frac{1}{2}\right], + \mod 1\right)$$
Tychonoff, \mathbb{T}, G

- All topological groups and spaces are Tychonoff.
- $\mathbb{T} := \mathbb{R}/\mathbb{Z}$. As a model for \mathbb{T} we take

 $\left(\left[-\frac{1}{2}, \frac{1}{2} \right], + \text{ mod } 1 \right)$

- $G = (\Gamma, \tau)$ is an Abelian topological group with underlying group Γ and group topology τ.
Character group

- The character group of G is given by

\[
\hat{G} := \{ f : G \rightarrow \mathbb{T} : f \ \tau\text{-continuous homomorphism}\}
\]

Elements of \hat{G} are called characters.
Character group

• The character group of G is given by

$$\hat{G} := \{ f : G \rightarrow T : f \tau\text{-continuous homomorphism}\}$$

Elements of \hat{G} are called characters.

• We assume G to be maximally almost periodic (MAP) i.e.,

$$\forall g \in G \setminus \{0\} \exists f \in \hat{G} [f(g) \neq 0]$$
Bohr topology

• For G as above, we define

$$\tau_w := \text{weakest topology that makes the elements of } \hat{G} \text{ continuous}$$

$$G^+ := (\Gamma, \tau_w)$$
Totally bounded groups

- A topological group is *totally bounded*, if it can be covered by finitely many translates of any of its open sets.
Totally bounded groups

- A topological group is *totally bounded*, if it can be covered by finitely many translates of any of its open sets.

- (Weil, 1937) G is totally bounded if and only if it is a dense subgroup of a compact group, which we denote by \overline{G}.
Totally bounded groups

• A topological group is totally bounded, if it can be covered by finitely many translates of any of its open sets.

• (Weil, 1937) \(G \) is totally bounded if and only if it is a dense subgroup of a compact group, which we denote by \(\overline{G} \).

• (Comfort-Ross, 1964) \(G = (\Gamma, \tau) \) is totally bounded if and only if \(\tau = \tau_w \).
Bohr compactification

- The Bohr compactification of G is defined by

$$bG := G^+$$
Bohr compactification

• The Bohr compactification of G is defined by

$$bG := \overline{G^+}$$

• $\text{Id} : G \longrightarrow G^+$ is continuous. Open if and only if $\tau = \tau_w$, i.e., if τ is totally bounded.
Bohr compactification

- The Bohr compactification of G is defined by
 \[bG := \overline{G^+} \]

- $\text{Id} : G \rightarrow G^+$ is continuous. Open if and only if $\tau = \tau_w$, i.e., if τ is totally bounded.

- As groups, $\hat{G} = \hat{bG}$.
Leptin, Glicksberg

- (Leptin, 1954) *For G discrete* ($\tau = \mathcal{P}(\Gamma)$) and $K \subseteq G$:

$$K \text{ finite } \iff K \text{ compact in } G^+$$
Leptin, Glicksberg

- (Leptin, 1954) For G discrete ($\tau = \mathcal{P}(\Gamma)$) and $K \subseteq G$:

$$K \text{ finite} \iff K \text{ compact in } G^+$$

- (Glicksberg, 1962) For G locally compact

$$K \text{ compact in } G \iff K \text{ compact in } G^+$$
Leptin, Glicksberg

- (Leptin, 1954) *For G discrete* ($\tau = \mathcal{P}(\Gamma)$) and $K \subseteq G$:

 $$K \text{ finite } \iff K \text{ compact in } G^+$$

- (Glicksberg, 1962) *For G locally compact*

 $$K \text{ compact in } G \iff K \text{ compact in } G^+$$

- Many authors have reproven Glicksberg’s theorem.
For G locally compact, let N be a metrizable subgroup of bG (with $N \cap G^+ = \{0\}$). If $K \subseteq G$, then

$$K \text{ compact in } G \iff K \text{ compact in } bG/N$$

$$G \rightarrow G^+ \subseteq bG \rightarrow bG/N$$
Comfort, T-A, and Wu, 1993

- For G locally compact, let N be a metrizable subgroup of bG (with $N \cap G^+ = \{0\}$). If $K \subseteq G$, then

$$K \text{ compact in } G \iff K \text{ compact in } bG/N$$

$$G \longrightarrow G^+ \subseteq bG \longrightarrow bG/N$$

- Condition may hold even for N non-metrizable.
Compact-open topology on \hat{G}

- If $K \subset G$ is compact and $\varepsilon > 0$, a typical neighborhood of the trivial character is

$$(K, \varepsilon) := \{f \in \hat{G} : |f(k)| < \varepsilon \ \forall k \in K\}$$
Compact-open topology on \hat{G}

- If $K \subset G$ is compact and $\varepsilon > 0$, a typical neighborhood of the trivial character is

$$ (K, \varepsilon) := \{ f \in \hat{G} : |f(k)| < \varepsilon \forall k \in K \} $$

- Then \hat{G} is a topological group.
Compact-open topology on \hat{G}

- If $K \subset G$ is compact and $\varepsilon > 0$, a typical neighborhood of the trivial character is

$$ (K, \varepsilon) := \{ f \in \hat{G} : |f(k)| < \varepsilon \ \forall k \in K \} $$

- Then \hat{G} is a topological group.
- If G is discrete, then \hat{G} is compact.
Compact-open topology on \hat{G}

- If $K \subset G$ is compact and $\varepsilon > 0$, a typical neighborhood of the trivial character is

$$(K, \varepsilon) := \{ f \in \hat{G} : |f(k)| < \varepsilon \ \forall k \in K \}$$

- Then \hat{G} is a topological group.

- If G is discrete, then \hat{G} is compact.

- If G is compact, then \hat{G} is discrete.
Annihilator

• If H is a closed subgroup of G its *Annihilator* is defined by

$$A(\hat{G}, H) := \{ f \in \hat{G} : f(h) = 0 \ \forall h \in H \}$$
Annihilator

- If H is a closed subgroup of G its Annihilator is defined by

$$\mathbb{A}(\hat{G}, H) := \{ f \in \hat{G} : f(h) = 0 \ \forall h \in H \}$$

- $\mathbb{A}(\hat{G}, H)$ is a subgroup of \hat{G}.
Annihilator

• If H is a closed subgroup of G its Annihilator is defined by

$$A(\hat{G}, H) := \{f \in \hat{G} : f(h) = 0 \ \forall h \in H\}$$

• $A(\hat{G}, H)$ is a subgroup of \hat{G}.

• As groups, \hat{H} and $\hat{G}/A(\hat{G}, H)$ are isomorphic.
Annihilator

- If H is a closed subgroup of G its **Annihilator** is defined by

\[\mathbb{A}(\hat{G}, H) := \{ f \in \hat{G} : f(h) = 0 \ \forall h \in H \} \]

- $\mathbb{A}(\hat{G}, H)$ is a subgroup of \hat{G}.

- As groups, \hat{H} and $\hat{G}/\mathbb{A}(\hat{G}, H)$ are isomorphic.

- Hence N compact and metrizable $\implies \hat{N} \simeq \hat{G}/\mathbb{A}(b\hat{G}, N)$ is countable.
\(\mathbb{A}(\hat{b}G, N) \) for \(N \) metrizable

- Hence \(\mathbb{A}(\hat{b}G, N) \) is a subgroup of \(\hat{b}G \simeq \hat{G} \) of countable index.
$A(\hat{bG}, N)$ for N metrizable

- Hence $A(\hat{bG}, N)$ is a subgroup of $\hat{bG} \simeq \hat{G}$ of countable index.
- If G is discrete, then \hat{G} is compact.
A(\hat{bG}, N) for N metrizable

- Hence A(\hat{bG}, N) is a subgroup of \hat{bG} \simeq \hat{G} of countable index.
- If G is discrete, then \hat{G} is compact.
- As groups, \hat{G}/H and A(\hat{G}, H) are isomorphic.
\(\mathbb{A}(\hat{bG}, N) \) for \(N \) metrizable

- Hence \(\mathbb{A}(\hat{bG}, N) \) is a subgroup of \(\hat{bG} \cong \hat{G} \) of countable index.
- If \(G \) is discrete, then \(\hat{G} \) is compact.
- As groups, \(\hat{G}/H \) and \(\mathbb{A}(\hat{G}, H) \) are isomorphic.
- Therefore \(\hat{bG}/N \cong \mathbb{A}(\hat{bG}, N) \) is a (Haar) non-measurable subgroup of \(\hat{G} \).
Hence, in CTW [1993]

- For G discrete, let N be a metrizable subgroup of bG (with $N \cap G^+ = \{0\}$). If $K \subseteq G$, then

$$K \text{ finite } \iff K \text{ compact in } bG/N$$

$$G \rightarrow G^+ \subseteq bG \rightarrow bG/N$$
Hence, in CTW [1993]

- For G discrete, let N be a metrizable subgroup of bG (with $N \cap G^+ = \{0\}$). If $K \subseteq G$, then

 \[K \text{ finite } \iff K \text{ compact in } bG/N \]

 \[G \longrightarrow G^+ \subseteq bG \longrightarrow bG/N \]

- $\widehat{bG/N} \simeq \Delta(\widehat{bG}, N)$ is a (Haar) non-measurable subgroup of \widehat{G}.

Sequences

• If K is compact and countable, then a non-trivial sequence in K converges.
Sequences

• If K is compact and countable, then a non-trivial sequence in K converges.

• (CTW, 1993) If $\langle x_n \rangle$ is a non-trivial sequence of elements in (discrete) G and

$$A := \{ f \in \hat{G} : f(x_n) \to 0 \}$$

Then A is a Borel subgroup of measure 0.
A la Leptin

- (CTW, 1993) Let G be discrete and countable. If N is a subgroup of bG with non-measurable (in \hat{G}) annihilator $\mathbb{A}(\hat{bG}, N)$, then for $K \subseteq G$

$$K \text{ finite } \iff K \text{ compact in } bG/N$$
A la Leptin

- (CTW, 1993) Let G be discrete and countable. If N is a subgroup of bG with non-measurable (in \hat{G}) annihilator $A(\hat{bG}, N)$, then for $K \subseteq G$

$$K \text{ finite } \iff K \text{ compact in } bG/N$$

- Again, $\hat{bG}/N = A(\hat{bG}, N) \subseteq \hat{bG} \simeq \hat{G}$.
Kakutani (1943)

\[
\text{Hom}(\Gamma, \mathbb{T}) := \{ f : \Gamma \rightarrow \mathbb{T} : f \text{ group homomorphism} \}
\]
Kakutani (1943)

\[\text{Hom}(\Gamma, \mathbb{T}) := \{ f : \Gamma \rightarrow \mathbb{T} : f \text{ group homomorphism}\} \]

- \text{Hom}(\Gamma, \mathbb{T}) \text{ has } 2^{2|\Gamma|} \text{-many subgroups } A_\zeta \text{ which separate points of } \Gamma \text{ i.e.,}\]

\[\forall g \in \Gamma \setminus \{0\} \exists f \in A_\zeta [f(g) \neq 0]. \]
Duality, CR (1964)

- If $G = \Gamma$ discrete, then $\hat{G} = \text{Hom}(\Gamma, \mathbb{T})$ is compact and a subgroup A separates the points of G if and only if $A \subset \hat{G}$ is dense.
Duality, CR (1964)

• If $G = \Gamma$ discrete, then $\hat{G} = \text{Hom}(\Gamma, \mathbb{T})$ is compact and a subgroup A separates the points of G if and only if $A \subset \hat{G}$ is dense.

• There exist a one-one relation between the above subgroups and the totally bounded topologies on Γ.

$$A_\zeta \mapsto \tau_\zeta.$$
Duality, CR (1964)

• If \(G = \Gamma\) discrete, then \(\hat{G} = \text{Hom}(\Gamma, \mathbb{T})\) is compact and a subgroup \(A\) separates the points of \(G\) if and only if \(A \subset \hat{G}\) is dense.

• There exist a one-one relation between the above subgroups and the totally bounded topologies on \(\Gamma\).

\[A_\zeta \leftrightarrow \tau_\zeta. \]

• The relation above is order preserving:

\[A \subset B \iff \tau_A \subset \tau_B. \]
Special case: $\Gamma = \mathbb{Z}$

- If $G = \mathbb{Z}$ (discrete), then $\hat{G} = \text{Hom}(\Gamma, \mathbb{T}) = \mathbb{T}$. This group has $2^\mathfrak{c}$-many dense subgroups. Hence \mathbb{Z} has $2^\mathfrak{c}$-many totally bounded topologies.
Special case: $\Gamma = \mathbb{Z}$

- If $G = \mathbb{Z}$ (discrete), then $\hat{G} = \text{Hom}(\Gamma, \mathbb{T}) = \mathbb{T}$. This group has 2^ω-many dense subgroups. Hence \mathbb{Z} has 2^ω-many totally bounded topologies.

- If A is a dense subgroup of \mathbb{T}, then τ_A denotes the weakest topology on \mathbb{Z} such that the maps

 $$n \mapsto na \mod 1$$

 are continuous, for each $a \in A$.
Diagram, \(N = A(b\mathbb{Z}, A) \)

\[\mathbb{Z}_A := (\mathbb{Z}, \tau_A)\]

\[
\begin{array}{cccccc}
\mathbb{Z} & \longrightarrow & \mathbb{Z}^+ & \longrightarrow & \mathbb{Z}_A & = \mathbb{Z}_A \\
\downarrow & & \downarrow & & \downarrow & \\
 b\mathbb{Z} & \longrightarrow & b\mathbb{Z}/N & = \overline{\mathbb{Z}_A} \\
\end{array}
\]

\[
\begin{array}{cccccc}
\mathbb{T} & \longleftarrow & \mathbb{T}_d & \longleftarrow & \overline{b\mathbb{Z}/N} & = A \\
\end{array}
\]
Raczkowski (1998)

• There exist 2^c-many dense non measurable subgroups A_ζ of \mathbb{T} of cardinality c, hence
Raczkowski (1998)

- There exist 2^c-many dense non measurable subgroups A_ζ of \mathbb{T} of cardinality c, hence
- there exist 2^c-many totally bounded topologies τ_ζ of weight c on \mathbb{Z} under which the only compact subsets of \mathbb{Z}_{A_ζ} are the finite ones.
Raczkowski (1998)

• There exist 2^c-many dense non measurable subgroups A_ζ of \mathbb{T} of cardinality c, hence

• there exist 2^c-many totally bounded topologies τ_ζ of weight c on \mathbb{Z} under which the only compact subsets of \mathbb{Z}_{A_ζ} are the finite ones.

• There also exist 2^c-many totally bounded topologies τ_ζ of weight c on \mathbb{Z} under which the sequence $n! \longrightarrow 0$.
Raczkowski (1998)

• There exist 2^c-many dense non measurable subgroups A_ζ of \mathbb{T} of cardinality c, hence

• there exist 2^c-many totally bounded topologies τ_ζ of weight c on \mathbb{Z} under which the only compact subsets of \mathbb{Z}_{A_ζ} are the finite ones.

• There also exist 2^c-many totally bounded topologies τ_ζ of weight c on \mathbb{Z} under which the sequence $n! \to 0$ (result eventually generalized by Barbieri, Dikranjan, Milan & Weber (2003)).
Raczkowski (1998)

- There exist 2^c-many dense non measurable subgroups A_ζ of \mathbb{T} of cardinality c, hence

- there exist 2^c-many totally bounded topologies τ_ζ of weight c on \mathbb{Z} under which the only compact subsets of \mathbb{Z}_{A_ζ} are the finite ones.

- There also exist 2^c-many totally bounded topologies τ_ζ of weight c on \mathbb{Z} under which the sequence $n! \to 0$ (result eventually generalized by Barbieri, Dikranjan, Milan & Weber (2003)).

Notice that if $A_\zeta := (\mathbb{Z}, \tau_\zeta)$, then $mA_\zeta = 0$.
Raczkowski’s question

• **Question.** Is there a subgroup A of T of measure 0, such that the only compact subsets of Z_A are finite?
Answers to Raczkowski’s question

• **Question.** Is there a subgroup A of \mathbb{T} of measure 0, such that the only compact subsets of \mathbb{Z}_A are finite?

• (Barbieri, Dikranjan, Milan & Weber 2003). Yes under Martin’s axiom.
Answers to Raczkowski’s question

- **Question.** Is there a subgroup A of \mathbb{T} of measure 0, such that the only compact subsets of \mathbb{Z}_A are finite?

- (Barbieri, Dikranjan, Milan & Weber 2003). Yes under Martin’s axiom.

- (Hart & Kunen 2005). Yes.
Answers to Raczkowski’s question

- **Question.** Is there a subgroup A of T of measure 0, such that the only compact subsets of \mathbb{Z}_A are finite?

- (Barbieri, Dikranjan, Milan & Weber 2003). Yes under Martin’s axiom.

- (Hart & Kunen 2005). Yes.

- Both subgroups above have cardinality \mathfrak{c}.
Question 1.

- Is there a measurable subgroup A of T of cardinality less than c, such that the only compact subsets of \mathbb{Z}_A are finite? In particular...
Question 1 (\aleph_1)

- Is there a measurable subgroup A of \mathbb{T} of cardinality \aleph_1, such that the only compact subsets of \mathbb{Z}_A are finite?
Question 1 (\aleph_1)

- Is there a measurable subgroup A of T of cardinality \aleph_1, such that the only compact subsets of \mathbb{Z}_A are finite?

- Remarks.
 - We are assuming \negCH
Question 1 (\aleph_1)

- Is there a measurable subgroup A of \mathbb{T} of cardinality \aleph_1, such that the only compact subsets of \mathbb{Z}_A are finite?

- Remarks.
 - We are assuming $\neg\text{CH}$
 - There are models of $\neg\text{CH}$ in which there exist nonmeasurable subgroups of \mathbb{T} of cardinality \aleph_1.

[p. 59/91]
Question 1 (ℵ₁)

- Is there a measurable subgroup \(A \) of \(T \) of cardinality \(ℵ₁ \), such that the only compact subsets of \(\mathbb{Z}_A \) are finite?

- Remarks.
 - We are assuming \(\neg \text{CH} \)
 - There are models of \(\neg \text{CH} \) in which there exist nonmeasurable subgroups of \(T \) of cardinality \(ℵ₁ \).
 - If the subgroup \(A \) of \(T \) is countable, then \(\mathbb{Z}_A \) is (totally bounded and) metrizable. Hence it has infinite compact sets.
Determined Subgroups

- If H is a dense subgroup of G, then every $f \in \hat{H}$ extends to some $\overline{f} \in \hat{G}$.

\[
\begin{align*}
H & \subseteq \mathrel{\overrightarrow{\subseteq}} G \\
f & \downarrow \\
T & \mathrel{\overrightarrow{\equiv}} T
\end{align*}
\]
Determined Subgroups

• If H is a dense subgroup of G, then every $f \in \hat{H}$ extends to some $\overline{f} \in \hat{G}$.

$$
\begin{array}{ccc}
H & \subseteq & G \\
\downarrow f & & \downarrow \overline{f} \\
\mathbb{T} & = & \mathbb{T}
\end{array}
$$
Also, if $f \in \hat{G}$ then its restriction to H belongs in \hat{H}.

\[
\begin{array}{cccc}
H & \subset & G \\
\downarrow f_{\mid H} & & \downarrow f \\
\top & & \top
\end{array}
\]
Determined Subgroups

- Hence the map $\phi : f \mapsto f|_H$ is an isomorphism from \hat{G} onto \hat{H}.
Determined Subgroups

- Hence the map \(\phi : f \mapsto f|_H \) is an isomorphism from \(\hat{G} \) onto \(\hat{H} \).
- Since compact subsets of \(H \) are compact in \(G \)

\[
\phi : \hat{G} \longrightarrow \hat{H}
\]

is continuous in the compact-open topology.
Determined Subgroups

- Hence the map $\phi : f \mapsto f|_H$ is an isomorphism from \hat{G} onto \hat{H}.
- Since compact subsets of H are compact in G

$$\phi : \hat{G} \longrightarrow \hat{H}$$

is continuous in the compact-open topology.

- **Question.** When is $\phi : \hat{G} \longrightarrow \hat{H}$ a topological isomorphism?
Determined Subgroups

- **Definition (CRT, 2001).** If H is a dense subgroup of G, we say that H determines G if $\phi : \hat{G} \longrightarrow \hat{H}$ is a topological isomorphism.
Determined Subgroups

- **Definition** (CRT, 2001). If H is a dense subgroup of G, we say that H determines G if $\phi : \hat{G} \rightarrow \hat{H}$ is a topological isomorphism.

- We say that G is determined if every dense subgroup of G determines G.
Determined Subgroups

• **Definition (CRT, 2001).** If H is a dense subgroup of G, we say that H determines G if $\phi : \hat{G} \to \hat{H}$ is a topological isomorphism.

• We say that G is **determined** if every dense subgroup of G determines G.

• \mathbb{Z}^+ does not determine $b\mathbb{Z}$.
Determined Subgroups

- **Definition (CRT, 2001).** If H is a dense subgroup of G, we say that H determines G if $\phi : \hat{G} \longrightarrow \hat{H}$ is a topological isomorphism.

- We say that G is determined if every dense subgroup of G determines G.

- \mathbb{Z}^+ does not determine $b\mathbb{Z}$.
 For $\hat{\mathbb{Z}}^+ = \mathbb{T}$, whereas $\hat{b\mathbb{Z}} = \mathbb{T}_d$.
Few results

- (Chasco-Aussenhofer, 1998) Every metrizable group is determined.
Few results

• (Chasco-Aussenhofer, 1998) Every metrizable group is determined.

• (CRT, 2001) A compact group of weight \mathfrak{c} (or bigger) is not determined.
Few results

- (Chasco-Aussenhofer, 1998) Every metrizable group is determined.
- (CRT, 2001) A compact group of weight \mathfrak{c} (or bigger) is not determined.
 - For example, \mathbb{T}^c is not determined.
Few results

• (Chasco-Aussenhofer, 1998) Every metrizable group is determined.

• (CRT, 2001) A compact group of weight \mathfrak{c} (or bigger) is not determined.
 • For example, $\mathbb{T}^\mathfrak{c}$ is not determined.
 • $\mathbb{Z}_n^\mathfrak{c}$ is not determined.
Question 2. (CRT, 2001)

• Is a compact group of weight $< c$ determined? In particular...
Question 2 (\aleph_1). (CRT, 2001)

- Is a compact group of weight \aleph_1 determined?
Question 2 (\aleph_1). (CRT, 2001)

• Is a compact group of weight \aleph_1 determined?
• We are assuming \negCH
Interplay between questions 1 and 2.

- Let A be a measurable subgroup of T of cardinality less than \aleph, such that the only compact subsets of \mathbb{Z}_A are finite.
Interplay between questions 1 and 2.

- Let A be a measurable subgroup of \mathbb{T} of cardinality less than \aleph, such that the only compact subsets of \mathbb{Z}_A are finite.

- Set $K = \overline{\mathbb{Z}_A}$. Then
Interplay between questions 1 and 2.

• Let A be a measurable subgroup of T of cardinality less than \mathfrak{c}, such that the only compact subsets of \mathbb{Z}_A are finite.

• Set $K = \overline{\mathbb{Z}_A}$. Then

• K is a compact group of weight $|A| < \mathfrak{c}$,
Interplay between questions 1 and 2.

- Let A be a measurable subgroup of T of cardinality less than c, such that the only compact subsets of \mathbb{Z}_A are finite.
- Set $K = \overline{\mathbb{Z}_A}$. Then
- K is a compact group of weight $|A| < c$,
- \mathbb{Z}_A is a dense subgroup of K,
Interplay between questions 1 and 2.

• Let \(A \) be a measurable subgroup of \(\mathbb{T} \) of cardinality less than \(c \), such that the only compact subsets of \(\mathbb{Z}_A \) are finite.

• Set \(K = \overline{\mathbb{Z}_A} \). Then

• \(K \) is a compact group of weight \(|A| < c \),

• \(\mathbb{Z}_A \) is a dense subgroup of \(K \),

• \(\hat{\mathbb{Z}_A} = A \subset \mathbb{T} \), whereas
Interplay between questions 1 and 2.

- Let A be a measurable subgroup of \mathbb{T} of cardinality less than \mathfrak{c}, such that the only compact subsets of \mathbb{Z}_A are finite.

- Set $K = \overline{\mathbb{Z}_A}$. Then

- K is a compact group of weight $|A| < \mathfrak{c}$,

- \mathbb{Z}_A is a dense subgroup of K,

- $\hat{\mathbb{Z}_A} = A \subset \mathbb{T}$, whereas

- $\hat{K} = A_d$.
Interplay between questions 1 and 2.

- Let \(A \) be a measurable subgroup of \(\mathbb{T} \) of cardinality less than \(c \), such that the only compact subsets of \(\mathbb{Z}_A \) are finite.
- Set \(K = \overline{\mathbb{Z}_A} \). Then
 - \(K \) is a compact group of weight \(|A| < c \),
 - \(\mathbb{Z}_A \) is a dense subgroup of \(K \),
 - \(\hat{\mathbb{Z}_A} = \hat{A} \subset \mathbb{T} \), whereas
 - \(\hat{K} = \hat{A}_d \).
- Therefore \(K \) is a compact group of weight \(< c \) that is not determined.
Interplay between questions 1 and 2 \((\aleph_1)\).

- If \(A\) is a measurable subgroup of \(\mathbb{T}\) of cardinality \(\aleph_1\), such that the only compact subsets of \(\mathbb{Z}_A\) are finite, then there is a compact group of weight \(\aleph_1\) that is not determined.
Few more questions.

• Is T_{\aleph_1} non-determined?
Few more questions.

- Is \mathbb{T}^\aleph_1 non-determined?
- If F is a finite group, is F^\aleph_1 non-determined?
Few more questions.

- Is \mathbb{T}^{\aleph_1} non-determined?
- If F is a finite group, is F^{\aleph_1} non-determined?

Last two questions are equivalent.
Few more questions.

- Is \mathbb{T}^{\aleph_1} non-determined?
- If F is a finite group, is F^{\aleph_1} non-determined? Last two questions are equivalent.
- If G_1 and G_2 are determined topological groups, is $G_1 \times G_2$ determined?
Few more questions.

• Is \mathbb{T}^{\aleph_1} non-determined?
• If F is a finite group, is F^{\aleph_1} non-determined?
 Last two questions are equivalent.
• If G_1 and G_2 are determined topological groups, is $G_1 \times G_2$ determined? In particular:
 • If G is determined, is $G \times G$ determined?
Respectfully dedicated

To Ta-Sun Wu

In memoriam

“Those fortunate enough to have known him personally will miss his smile and his friendly, self-effacing humility. The profession has been deprived of a significant figure of great creativity.”

WWC and SH