This chapter is about such relationships between force, mass, and changes in motion.
In chapter 1, you learned some “tools and rules” and some techniques for finding order in your surroundings. Order is often found in the form of patterns, or relationships between quantities that are expressed as equations. Equations can be used to (1) describe properties, (2) define concepts, and (3) describe how quantities change relative to one another. In all three uses, patterns are quantified, conceptualized, and used to gain a general understanding about what is happening in nature.

In the study of science, certain parts of nature are often considered and studied together for convenience. One of the more obvious groupings involves movement. Most objects around you appear to spend a great deal of time sitting quietly without motion. Buildings, rocks, utility poles, and trees rarely, if ever, move from one place to another. Even things that do move from time to time sit still for a great deal of time. This includes you, automobiles, and bicycles (figure 2.1). On the other hand, the sun, the moon, and starry heavens always seem to move, never standing still. Why do things stand still? Why do things move?

Questions about motion have captured the attention of people for thousands of years. But the ancient people answered questions about motion with stories of mysticism and spirits that lived in objects. It was during the classic Greek culture, between 600 B.C. and 300 B.C., that people began to look beyond magic and spirits. One particular Greek philosopher, Aristotle, wrote a theory about the universe that offered not only explanations about things such as motion but also offered a sense of beauty, order, and perfection. The theory seemed to fit with other ideas that people had and was held to be correct for nearly two thousand years after it was written. It was not until the work of Galileo and Newton during the 1600s that a new, correct understanding about motion was developed. The development of ideas about motion is an amazing and absorbing story. You will learn in this chapter how to describe and use some properties of motion. This will provide some basic understandings about motion, and will be very helpful in understanding some important aspects of astronomy and the earth sciences, as well as the movement of living things.

DESCRIBING MOTION

Motion is one of the more common events in your surroundings. You can see motion in natural events such as clouds moving, rain and snow falling, and streams of water, all moving in a never-ending cycle. Motion can also be seen in the activities of people who walk, jog, or drive various machines from place to place. Motion is so common that you would think everyone would intuitively understand the concepts of motion, but history indicates that it was only during the past three hundred years or so that people began to understand motion correctly. Perhaps the correct concepts are subtle and contrary to common sense, requiring a search for simple, clear concepts in an otherwise complex situation. The process of finding such order in a multitude of sensory impressions by taking measurable data, and then inventing a concept to describe what is happening, is the activity called science. We will now apply this process to motion.

What is motion? Consider a ball that you notice one morning in the middle of a lawn. Later in the afternoon, you notice that the ball is at the edge of the lawn, against a fence, and you wonder if the wind or some person moved the ball. You do not know if the wind blew it at a steady rate, if many gusts of wind moved it, or even if some children kicked it all over the yard. All you know for sure is that the ball has been moved because it is in a different position after some time passed. These are the two important aspects of motion: (1) a change of position and (2) the passage of time.

If you did happen to see the ball rolling across the lawn in the wind, you would see more than the ball at just two locations. You would see the ball moving continuously. You could consider, however, the ball in continuous motion to be a series of individual locations with very small time intervals. Moving involves a change of position during some time period. Motion is the act or process of something changing position.

The motion of an object is usually described with respect to something else that is considered to be not moving. (Such a stationary object is said to be “at rest.”) Imagine that you are traveling in an automobile with another person. You know that you are moving across the land outside the car since your location on the highway changes from one moment to another. Observing your fellow passenger, however, reveals no change of position. You are in motion relative to the highway outside the car. You are not in motion relative to your fellow passenger. Your motion, and the motion of any other object or body, is the process of a change in position relative to some reference object or location. Thus motion can be defined as the act or process of changing position relative to some reference during a period of time.

MEASURING MOTION

You have learned that objects can be described by measuring certain fundamental properties such as mass and length. Since motion involves (1) a change of position and (2) the passage of time, the motion of objects can be described by using combinations of the fundamental properties of length and time. Combinations of these measurements describe three properties of motion: speed, velocity, and acceleration.

Speed

Suppose you are in a car that is moving over a straight road. How could you describe your motion? You need at least two measurements, (1) the distance you have traveled, and (2) the time that has elapsed while you covered this distance. Such a distance and time can be expressed as a ratio that describes your motion. This ratio is a property of motion called speed, which is a measure of how fast you are moving. Speed is defined as distance per unit of time, or

\[\text{speed} = \frac{\text{distance}}{\text{time}} \]

The units used to describe speed are usually miles/hour (mi/h), kilometers/hour (km/h), or meters/second (m/s).
Let’s go back to your car that is moving over a straight highway and imagine you are driving to cover equal distances in equal periods of time (figure 2.2). If you use a stopwatch to measure the time required to cover the distance between highway mile markers (those little signs with numbers along major highways), the time intervals will all be equal. You might find, for example, that one minute lapses between each mile marker. Such a uniform straight-line motion that covers equal distances in equal periods of time is the simplest kind of motion.

If your car were moving over equal distances in equal periods of time, it would have a constant speed. This means that the car is neither speeding up nor slowing down. It is usually difficult to maintain a constant speed. Other cars and distractions such as interesting scenery cause you to reduce your speed. At other times you increase your speed. If you calculate your speed over an entire trip, you are considering a large distance between two places and the total time that elapsed. The increases and decreases in speed would be averaged. Therefore, most speed calculations are for an average speed. The speed at any specific instant is called the instantaneous speed. To calculate the instantaneous speed, you would need to consider a very short time interval—one that approaches zero. An easier way would be to use the speedometer, which shows the speed at any instant.

It is easier to study the relationships between quantities if you use symbols instead of writing out the whole word. The letter v can be used to stand for speed when dealing with straight-line motion, which is the only kind of motion that will be considered in the problems in this text. A bar over the v (\(\bar{v} \)) is a symbol that means average (it is read “\(\bar{v} \)-bar” or “\(\bar{v} \)-average”). The letter d can be used to stand for distance and the letter t to stand for time. The relationship between average speed, distance, and time is therefore

$$\bar{v} = \frac{d}{t}$$

equation 2.1

This is one of the three types of equations that were discussed earlier, and in this case the equation defines a motion property (figure 2.3).

Constant, instantaneous, or average speeds can be measured with any distance and time units. Common units in the

Figure 2.1
The motion of this windsurfer, and of other moving objects, can be described in terms of the distance covered during a certain time period.

Figure 2.2
This car is moving in a straight line over a distance of 1 mi each minute. Therefore, the car moves 60 mi in 60 min and has a speed of 60 mi/h.
English system are miles/hour and feet/second. Metric units for speed are commonly kilometers/hour and meters/second. The ratio of any distance/time is usually read as distance per time, such as miles per hour.

Velocity

The word “velocity” is sometimes used interchangeably with the word “speed,” but there is a difference. **Velocity** describes the **speed and direction** of a moving object. For example, a speed might be described as 60 km/h. A velocity might be described as 60 km/h to the west. To produce a change in velocity, either the speed or the direction is changed (or both are changed). A satellite moving with a constant speed in a circular orbit around the earth does not have a constant velocity since its direction of movement is constantly changing. Velocities can be represented graphically with arrows. The lengths of the arrows are proportional to the magnitude, and the arrowheads indicate the direction (figure 2.4).
line velocity of 60 km/h when the driver accelerates to 80 km/h. Suppose it takes 4 s to increase the velocity of 60 km/h to 80 km/h. The change in velocity is therefore 80 km/h minus 60 km/h, or 20 km/h. The acceleration was

\[
\text{acceleration} = \frac{80 \text{ km/h} - 60 \text{ km/h}}{4 \text{ s}} = \frac{20 \text{ km/h}}{4 \text{ s}} = 5 \text{ km/h/s}
\]

The average acceleration of the car was 5 km/h for each (“per”) second. This is another way of saying that the velocity increases an average of 5 km/h in each second. The velocity of the car was 60 km/h when the acceleration began (initial velocity). At the end of 1 s, the velocity was 65 km/h; at the end of 2 s, it was 70 km/h; at the end of 3 s, 75 km/h; and at the end of 4 s (total time elapsed), the velocity was 80 km/h (final velocity). Note how fast the velocity is changing with time. In summary,

- start (initial velocity) 60 km/h
- first second 65 km/h
- second second 70 km/h
- third second 75 km/h
- fourth second (final velocity) 80 km/h

As you can see, acceleration is really a description of how fast the speed is changing (figure 2.5); in this case, it is increasing 5 km/h each second.

\[a = \frac{v_f - v_i}{t} \]

equation 2.2

Usually, you would want all the units to be the same, so you would convert km/hr to m/s. A change in velocity of 5.0 km/h converts to 1.4 m/s and the acceleration would be 1.4 m/s/s. The units m/s per s mean what change of velocity (1.4 m/s) is occurring every second. The combination m/s/s is rather cumbersome, so it is typically treated mathematically to simplify the expression (to simplify a fraction, invert the divisor and multiply, or m/s × 1/s = m/s²). Remember that the expression 1.4 m/s² means the same as 1.4 m/s per s, a change of velocity in a given time period.

The relationship among the quantities involved in acceleration can be represented with the symbols \(a\) for average acceleration, \(v_f\) for final velocity, \(v_i\) for initial velocity, and \(t\) for time. The relationship is

- A Constant direction increase speed
- B Constant direction decrease speed
- C Change direction constant speed
- D Change direction change speed

Figure 2.6

Four different ways (A–D) to accelerate a car.
FORCES

The Greek philosopher Aristotle considered some of the first ideas about the causes of motion back in the fourth century B.C. However, he had it all wrong when he reportedly stated that a dropped object falls at a constant speed that is determined by its weight. He also incorrectly thought that an object moving across the earth’s surface requires a continuously applied force in order for friction between wheels and the rails since it does not have wheels. This lack of resistance and the easily manipulated magnetic fields makes very short acceleration distances possible. For example, a German maglev train can accelerate from 0 to 300 km/h (about 185 mi/h) over a distance of just 5 km (about 3 mi). A conventional train with wheels requires about 30 km (about 19 mi) in order to reach the same speed from a standing start. The maglev train is an aircraft attractive for short runs because of its superior acceleration. It is also attractive for longer runs because of its high top speed—up to about 500 km/h (about 310 mi/h). Today, only an aircraft can match such a speed.

CONCEPTS APPLIED

Acceleration Patterns

Suppose the radiator in your car has a leak and drops fall constantly, one every second. What pattern would the drops make on the pavement when you accelerate the car from a stoplight? What pattern would they make when you drive a constant speed? What pattern would you observe as the car comes to a stop? Use a marker to make dots on a sheet of paper that illustrate (1) acceleration, (2) constant speed, and (3) negative acceleration. Use words to describe the acceleration in each situation.

Weather

Classification schemes are imaginative mental constructions used to show similarities and differences in objects or events. For example, the following describes two schemes used to help us classify storms that are not associated with weather fronts.

What is the difference between a tropical depression, tropical storm, and a hurricane? They are classified according to the speed of the maximum sustained surface winds. In the United States the maximum sustained surface wind is measured by averaging the wind speed over a 1-minute period. Here is the classification scheme:

<table>
<thead>
<tr>
<th>Category</th>
<th>Damage</th>
<th>Winds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>minimal</td>
<td>120–153 km/h (75–95 mi/h)</td>
</tr>
<tr>
<td>2</td>
<td>moderate</td>
<td>154–177 km/h (96–110 mi/h)</td>
</tr>
<tr>
<td>3</td>
<td>extensive</td>
<td>178–210 km/h (111–130 mi/h)</td>
</tr>
<tr>
<td>4</td>
<td>extreme</td>
<td>211–250 km/h (131–155 mi/h)</td>
</tr>
<tr>
<td>5</td>
<td>catastrophic</td>
<td>>250 km/h (>155 mi/h)</td>
</tr>
</tbody>
</table>

Tugboats can vary the strength of the force exerted on a ship, but they can also push in different directions. What effect does direction have on two forces acting on an object? If the tugboats were side by side, pushing in the same direction, the overall force is the sum of the two forces. If they act in exactly opposite directions, one pushing on each side of the ship, the overall force is the difference between the strength of the two forces. If they have the same strength, the overall effect is to cancel each other without producing any motion. The net force is the sum of all the forces acting on an object. Net force means “final,” after the forces are added (figure 2.8).
Figure 2.7
The rate of movement and the direction of movement of this ship are determined by a combination of direction and size of force from each of the tugboats. Which direction are the two tugboats pushing? What evidence would indicate that one tugboat is pushing with a greater force? If the tugboat by the numbers is pushing with a greater force and the back tugboat is keeping the ship from moving, what will happen?

Figure 2.8
(A) When two parallel forces are acting on the ship in the same direction, the net force is the two forces added together. (B) When two forces are opposite and of equal size, the net force is zero. (C) When two parallel forces are not of equal size, the net force is the difference in the direction of the larger force.
When two parallel forces act in the same direction, they can be simply added. In this case, there is a net force that is equivalent to the sum of the two forces. When two parallel forces act in opposite directions, the net force is the difference between the two forces and is in the direction of the larger force. When two forces act neither in a way that is exactly together nor exactly opposite each other, the result will be like a new, different force having a new direction and strength.

Forces have a strength and direction that can be represented by force arrows. The tail of the arrow is placed on the object that feels the force, and the arrowhead points in the direction in which the force is exerted. The length of the arrow is proportional to the strength of the force. The use of force arrows helps you visualize and understand all the forces and how they contribute to the net force.

HORIZONTAL MOTION ON LAND

Everyday experience seems to indicate that Aristotle’s idea about horizontal motion on the earth’s surface is correct. After all, moving objects that are not pushed or pulled do come to rest in a short period of time. It would seem that an object keeps moving only if a force continues to push it. A moving automobile will slow and come to rest if you turn off the ignition. Likewise, a ball that you roll along the floor will slow until it comes to rest. Is the natural state of an object to be at rest, and is a force necessary to keep an object in motion? This is exactly what people thought until Galileo (figure 2.9) published his book *Two New Sciences* in 1638, which described his findings about motion.

The book had three parts that dealt with uniform motion, accelerated motion, and projectile motion. Galileo described details of simple experiments, measurements, calculations, and thought experiments as he developed definitions and concepts of motion. In one of his thought experiments, Galileo presented an argument against Aristotle’s view that a force is needed to keep an object in motion. Galileo imagined an object (such as a ball) moving over a horizontal surface without the force of friction. He concluded that the object would move forever with a constant velocity as long as there was no unbalanced force acting to change the motion.

Why does a rolling ball slow to a stop? You know that a ball will roll farther across a smooth, waxed floor such as a bowling lane than it will across floor covered with carpet. The rough carpet offers more resistance to the rolling ball. The resistance of the floor friction is shown by a force arrow, F_{friction}, in figure 2.10. This force, along with the force arrow for air resistance, F_{air}, oppose the forward movement of the ball. Notice the dashed line arrow in part A of figure 2.10. There is no other force applied to the ball, so the rolling speed decreases until the ball finally comes to a complete stop. Now imagine what force you would need to exert by pushing with your hand, moving along with the ball to keep it rolling at a uniform rate. An examination of the forces in part B of figure 2.10 can help you determine the amount of force. The force you apply, F_{applied}, must counteract the resistance forces. It opposes the forces that are slowing down the ball as illustrated by the direction of the arrows. To determine how much force you should apply, look at the arrow equation. F_{applied} has the same length as the sum of the two resistance forces, but it is in the opposite direction of the resistance forces. Therefore, the overall force, F_{net}, is zero. The ball continues to roll at a uniform rate when you balance the force opposing its motion. It is reasonable, then, that if there were no opposing forces, you would not need to apply a force to keep it rolling. This was the kind of reasoning that Galileo did when he discredited the Aristotelian view that a force was necessary to keep an object moving. Galileo concluded that a moving object would continue moving with a constant velocity if no unbalanced forces were applied, that is, if the net force were zero.

It could be argued that the difference in Aristotle’s and Galileo’s views of forced motion is really a degree of analysis. After all, moving objects on the earth do come to rest unless continuously pushed or pulled. But Galileo's conclusion describes why they must be pushed or pulled and reveals the true nature of the motion of objects. Aristotle argued that the natural state of objects is to be at rest and attempted to explain why objects move. Galileo, on the other hand, argued that it is just as natural for an object to be moving and attempted to explain why they come to rest. Galileo called the behavior of matter to persist in
Figure 2.10

(A) This ball is rolling to your left with no forces in the direction of motion. The sum of the force of floor friction (\(F_{\text{floor}}\)) and the force of air friction (\(F_{\text{air}}\)) result in a net force opposing the motion, so the ball slows to a stop. (B) A force is applied to the moving ball, perhaps by a hand that moves along with the ball. The force applied (\(F_{\text{applied}}\)) equals the sum of the forces opposing the motion, so the ball continues to move with a constant velocity.

Figure 2.11

Explain how the combination of drawings (A–D) illustrates inertia.

Figure 2.12

According to a widespread story, Galileo dropped two objects with different weights from the Leaning Tower of Pisa. They reportedly hit the ground at about the same time, discrediting Aristotle's view that the speed during the fall is proportional to weight.

FALLING OBJECTS

Did you ever wonder what happens to a falling rock during its fall? Aristotle reportedly thought that a rock falls at a uniform speed that is proportional to its weight. Thus, a heavy rock would fall at a faster uniform speed than a lighter rock. As stated in a popular story, Galileo discredited Aristotle's conclusion by dropping a solid iron ball and a solid wooden ball simultaneously from the top of the Leaning Tower of Pisa (figure 2.12). Both balls, according to the story, hit the ground nearly at the same time. To do this, they would have to fall with the same velocity. In other words, the velocity of a falling object does not depend on its weight. Any difference in freely falling bodies is explainable by air resistance. Soon after the time of Galileo the air pump was invented. The air pump could be used to remove the air from a glass tube. The effect of air resistance on falling objects could then be demonstrated by comparing how objects fall in the air with how they fall in an evacuated glass tube. You know that a coin falls faster when dropped with a feather in the air. A feather and heavy coin will fall together in the near vacuum of an evacuated glass tube because the effect of air resistance on the feather has been removed. When objects fall toward the earth without considering air resistance, they are said to be in free fall. Free fall considers only gravity and neglects air resistance.

Galileo concluded that light and heavy objects fall together in free fall, but he also wanted to know the details of what was going on while they fell. He now knew that the velocity of an object in free fall was not proportional to the weight of the object. He observed that the velocity of an object in free fall increased as the object fell and reasoned from this that the velocity...
Galileo was one of the first to recognize the role of friction in opposing motion. As shown in figure 2.10, friction with the surface and air friction combine to produce a net force that works against anything that is moving on the surface. This article is about air friction and some techniques that bike riders use to reduce that opposing force—perhaps giving them an edge in a close race.

In a sense, riding in a slipstream means that you do not have to push as much air out of your way. It has been estimated that at 20 mi/h a cyclist must move a little less than half a ton of air out of the way every minute. One of the earliest demonstrations of how a slipstream can help a cyclist was done back about the turn of the century. Charles Murphy had a special bicycle trail built down the middle of a railroad track. Riding very close behind a special train caboose, Murphy was able to reach a speed of over 60 mi/h for a one-mile course. More recently, cyclists have reached over 125 mi/h by following close in the slipstream of a race car.

Along with the problem of moving about a half-ton of air out of the way every minute, there are two basic factors related to air resistance. These are (1) a turbulent versus a smooth flow of air, and (2) the problem of frictional drag. A turbulent flow of air contributes to air resistance because it causes the air to separate slightly on the back side, which increases the pressure on the front of the moving object. This is why racing cars, airplanes, boats, and other racing vehicles are streamlined to a teardrop-like shape. This shape is not as likely to have the lower-pressure-producing air turbulence behind (and resulting greater pressure in front) because it smoothes or streamlines the air flow.

The frictional drag of air is similar to the frictional drag that occurs when you push a book across a rough tabletop. You know that smoothing the rough tabletop will reduce the frictional drag on the book. Likewise, the smoothing of a surface exposed to moving air will reduce air friction. Cyclists accomplish this “smoothing” by wearing smooth lycra clothing, and by shaving hair from arm and leg surfaces that are exposed to moving air. Each hair contributes to the overall frictional drag, and removal of the arm and leg hair can thus result in seconds saved. This might provide enough of an edge to win a close race. Shaving legs and arms, together with the wearing of lycra or some other tight, smooth-fitting garments, are just a few of the things a cyclist can do to gain an edge. Perhaps you will be able to think of more ways to reduce the forces that oppose motion.

Connections . . .

Sports

There are two different meanings for the term “free fall.” In physics, “free fall” means the unconstrained motion of a body in a gravitational field, without considering air resistance. Without air resistance all objects are assumed to accelerate toward the surface at 9.8 m/s².

In the sport of skydiving, “free fall” means falling within the atmosphere without a drag-producing device such as a parachute. Air provides a resisting force that opposes the motion of a falling object, and the net force is the difference between the downward force (weight) and the upward force of air resistance. The weight of the falling object depends on the mass and acceleration from gravity, and this is the force downward. The resisting force is determined by at least two variables, (1) the area of the object exposed to the airstream, and (2) the speed of the falling object. Other variables such as streamlining, air temperature, and turbulence play a role, but the greatest effect seems to be from exposed area and the increased resistance as speed increases.

A skydiver’s weight is constant, so the downward force is constant. Modern skydivers typically free-fall from about 3,650 m (about 12,000 ft) above the ground until about 750 m (about 2,500 ft), where they open their parachutes. After jumping from the plane, the diver at first accelerates toward the surface, reaching speeds up to about 185–210 km/h (about 115–130 mi/h). The air resistance increases with increased speed and the net force becomes less and less. Eventually, the downward weight force will be balanced by the upward air resistance force, and the net force becomes zero. The person now falls at a constant speed and we say the terminal velocity has been reached. It is possible to change your body position to vary your rate of fall up or down by 32 km/h (about 20 mi/h). However, by diving or “standing up” in free fall, experienced skydivers can learn to reach speeds of up to 290 km/h (about 180 mi/h). The record free fall speed, done without any special equipment, is 517 km/h (about 321 mi/h). Once the parachute opens, a descent rate of about 16 km/h (about 10 mi/h) is typical.
of the falling object would have to be (1) somehow proportional to the time of fall and (2) somehow proportional to the distance the object fell. If the time and distance were both related to the velocity of a falling object, how were they related to one another?

Galileo reasoned that a freely falling object should cover a distance proportional to the square of the time of the fall \((d \propto t^2) \). In other words, the object should fall 4 times as far in 2 s as in 1 s \((2^2 = 4)\), 9 times as far in 3 s \((3^2 = 9)\), and so on. Galileo checked this calculation by rolling balls on an inclined board with a smooth groove in it. He used the inclined board to slow the motion of descent in order to measure the distance and time relationships, a necessary requirement since he lacked the accurate timing devices that exist today. He found, as predicted, that the falling balls moved through a distance proportional to the square of the time of falling. This also means that the velocity of the falling object increased at a constant rate. Recall that a change of velocity during some time period is called acceleration. In other words, a falling object accelerates toward the surface of the earth.

Since the velocity of a falling object increases at a constant rate, this must mean that falling objects are uniformly accelerated by the force of gravity. All objects in free fall experience a constant acceleration. During each second of fall, the object gains 9.8 m/s \((32.2 \text{ ft/s})\) in velocity. This gain is the acceleration of the falling object, 9.8 m/s\(^2\) \((32.2 \text{ ft/s}^2)\).

The acceleration of objects falling toward the earth varies slightly from place to place on the earth's surface because of the earth's shape and spin. The acceleration of falling objects decreases from the poles to the equator and also varies from place to place because the earth's mass is not distributed equally. The value of 9.8 m/s\(^2\) \((32.2 \text{ ft/s}^2)\) is an approximation that is fairly close to, but not exactly, the acceleration due to gravity in any particular location. The acceleration due to gravity is important in a number of situations, so the acceleration from this force is given a special symbol, \(g\).

Concepts Applied

Falling Bodies

Galileo concluded that all objects fall together, with the same acceleration, when the upward force of air resistance is removed. It would be most difficult to remove air from the room, but it is possible to do some experiments that provide some evidence of how air influences falling objects.

1. Take a sheet of paper and your textbook and drop them side by side from the same height. Note the result.
2. Place the sheet of paper on top of the book and drop them at the same time. Do they fall together?
3. Crumple the sheet of paper into a loose ball and drop the ball and book side by side from the same height.
4. Crumple a sheet of paper into a very tight ball and again drop the ball and book side by side from the same height.

Explain any evidence you found concerning how objects fall.

Vertical Projectiles

Consider first a ball that you throw straight upward, a vertical projection. The ball has an initial velocity but then reaches a maximum height, stops for an instant, then accelerates back toward the earth. Gravity is acting on the ball throughout its climb, stop, and fall. As it is climbing, the force of gravity is accelerating it back to the earth. The overall effect during the climb is deceleration, which continues to slow the ball until the instantaneous stop. The ball then accelerates back to the surface just like a ball that has been dropped. If it were not for air resistance, the ball would return with the same velocity that it had initially. The velocity arrows for a ball thrown straight up are shown in figure 2.13.

Horizontal Projectiles

Horizontal projections are easier to understand if you split the complete motion into vertical and horizontal parts. Consider, for example, an arrow shot horizontally from a bow. The force of gravity accelerates the arrow downward, giving it an increasing downward velocity as it moves through the air. This increasing downward velocity is shown in figure 2.14 as increasingly longer velocity arrows \(v_h\). There are no forces in the horizontal direction if you ignore air resistance, so the horizontal velocity of the arrow remains the same as shown by the \(v_h\) velocity arrows. The combination of the increasing vertical \(v_v\) motion and the unchanging horizontal \(v_h\) motion causes the arrow to follow a curved path until it hits the ground.

An interesting prediction that can be made from the shot-arrow analysis is that an arrow shot horizontally from a bow will hit the ground at the same time as a second arrow that is simply dropped from the same height (figure 2.14). Would this be true of a bullet dropped at the same time as one fired horizontally from a rifle? The answer is yes; both bullets would hit the ground at the same time. Indeed, if you ignore air resistance, all the bullets and arrows should hit the ground at the same time if dropped or shot from the same height.

Golf balls, footballs, and baseballs are usually projected upward at some angle to the horizon. The horizontal motion of these projectiles is constant as before because there are no
the bubonic plague, or Black Death, was ravaging Europe. During this time, Newton returned to his boyhood home, where he thought out most of the ideas that would later make him famous. Here, between the ages of twenty-three and twenty-four, he invented the field of mathematics called calculus and clarified his ideas on motion and gravitation. After the plague he returned to Cambridge, where he was appointed professor of mathematics at the age of twenty-six. He lectured and presented papers on optics. One paper on his theory about light and colors caused such a controversy that Newton resolved never to publish another line. Newton was a shy, introspective person who was too absorbed in his work for such controversy. In 1684, Edmund Halley (of Halley’s comet fame) asked Newton to resolve a dispute involving planetary motions. Newton had already worked out the solution to this problem, in addition to other problems on gravity and motion. Halley persuaded the reluctant Newton to publish the material. Two years later, in 1687, Newton published *Principia*, which was paid for by Halley. Although he feared controversy, the book was accepted almost at once and established Newton as one of the greatest thinkers who ever lived.

Newton built his theory of motion on the previous work of Galileo and others. In fact, Newton’s first law is similar to the concept of inertia described earlier by Galileo. Newton acknowledged the contribution of Galileo and others to his work, stating that if he had seen further than others “it was by standing upon the shoulders of giants.”

Newton’s First Law of Motion

Newton’s first law of motion is also known as the law of inertia and is very similar to one of Galileo’s findings about motion. Recall that Galileo used the term inertia to describe the tendency of an object to resist changes in motion. Newton’s first law describes this tendency more directly. In modern terms (not Newton’s words), the first law of motion is as follows:

Every object retains its state of rest or its state of uniform straight-line motion unless acted upon by an unbalanced force.

This means that an object at rest will remain at rest unless it is put into motion by an unbalanced force; that is, the net force must be greater than zero. Likewise, an object moving with uniform straight-line motion will retain that motion unless a net force causes it to speed up, slow down, or change its direction of travel. Thus, Newton’s first law describes the tendency of an object to resist any change in its state of motion.

Think of Newton’s first law of motion when you ride standing in the aisle of a bus. The bus begins to move, and you, being an independent mass, tend to remain at rest. You take a few steps back as you tend to maintain your position relative to the ground outside. You reach for a seat back or some part of the bus. Once you have a hold on some part of the bus it supplies the forces needed to give you the same motion as the bus and you no longer find it necessary to step backward. You now have the same motion as the bus, and no forces are involved, at least until the bus goes around a curve.

Figure 2.13

On its way up, a vertical projectile such as this misdirected golf ball is slowed by the force of gravity until an instantaneous stop; then it accelerates back to the surface, just as another golf ball does when dropped from the same height. The straight up and down moving golf ball has been moved to the side in the sketch so we can see more clearly what is happening.

Horizontal forces involved. The vertical motion is the same as that of a ball projected directly upward. The combination of these two motions causes the projectile to follow a curved path called a *parabola*, as shown in figure 2.15. The next time you have the opportunity, observe the path of a ball that has been projected at some angle (figure 2.16). Note that the second half of the path is almost a reverse copy of the first half. If it were not for air resistance, the two values of the path would be exactly the same. Also note the distance that the ball travels as compared to the angle of projection. An angle of projection of 45° results in the maximum distance of travel.

Laws of Motion

Isaac Newton (1643–1727) was a quiet farm boy who seemed more interested in mathematics and tinkering than farming. He entered Trinity College of Cambridge University at the age of eighteen, where he enrolled in mathematics. He graduated four years later, the same year that the university was closed because...
Figure 2.14
A horizontal projectile has the same horizontal velocity throughout the fall as it accelerates toward the surface, with the combined effect resulting in a curved path. Neglecting air resistance, an arrow shot horizontally will strike the ground at the same time as one dropped from the same height above the ground, as shown here by the increasing vertical velocity arrows.

Figure 2.15
A football is thrown at some angle to the horizon when it is passed downfield. Neglecting air resistance, the horizontal velocity is a constant, and the vertical velocity decreases, then increases, just as in the case of a vertical projectile. The combined motion produces a parabolic path. Contrary to statements by sportscasters about the abilities of certain professional quarterbacks, it is impossible to throw a football with a “flat trajectory” because it begins to accelerate toward the surface as soon as it leaves the quarterback’s hand.
You now feel a tendency to move to the side of the bus. The bus has changed its straight-line motion, but you, again being an independent mass, tend to move straight ahead. The side of the seat forces you into following the curved motion of the bus. The forces you feel when the bus starts moving or turning are a result of your tendency to remain at rest or follow a straight path until forces correct your motion so that it is the same as that of the bus (figure 2.17).

Newton’s Second Law of Motion

Newton had successfully used Galileo’s ideas to describe the nature of motion. Newton’s first law of motion explains that any object, once started in motion, will continue with a constant velocity in a straight line unless a force acts on the moving object. This law not only describes motion but establishes the role of a force as well. A change of motion is therefore evidence of the action of a net force. The association of forces and a change of motion is common in your everyday experience. You have felt forces on your back in an accelerating automobile, and you have felt other forces as the automobile turns or stops. You have also learned about gravitational forces that accelerate objects toward the surface of the earth. Unbalanced forces and acceleration are involved in any change of motion. Newton’s second law of motion is a relationship between net force, acceleration, and mass that describes the cause of a change of motion (figure 2.18).

Consider the motion of you and a bicycle you are riding. Suppose you are riding your bicycle over level ground in a straight line at 10 miles per hour. Newton’s first law tells you that you will continue with a constant velocity in a straight line as long as no external, unbalanced force acts on you and the bicycle. The force that you are exerting on the pedals seems to equal some external force that moves you and the bicycle along (more on this later). The force exerted as you move along is needed to balance the resisting forces of tire friction and air resistance. If
these resisting forces were removed, you would not need to exert any force at all to continue moving at a constant velocity. The net force is thus the force you are applying minus the forces from tire friction and air resistance. The net force is therefore zero when you move at a constant speed in a straight line (figure 2.19).

If you now apply a greater force on the pedals the extra force you apply is unbalanced by friction and air resistance. Hence there will be a net force greater than zero, and you will accelerate. You will accelerate during, and only during, the time that the net force is greater than zero. Likewise, you will slow down if you apply a force to the brakes, another kind of resisting friction. A third way to change your velocity is to apply a force on the handlebars, changing the direction of your velocity. Thus, unbalanced forces on you and your bicycle produce an acceleration.

Starting a bicycle from rest suggests a relationship between force and acceleration. You observe that the harder you push on the pedals, the greater your acceleration. If you double the net force, then you will also double the acceleration, reaching the same velocity in half the time. Likewise, if you triple the force you will increase the acceleration threefold. Recall that when quantities increase or decrease together in the same ratio, they are said to be directly proportional. The acceleration is therefore directly proportional to the force.

Suppose that your bicycle has two seats, and you have a friend who will ride with you. Suppose also that the addition of your friend on the bicycle will double the mass of the bike and riders. If you use the same net force as before, the bicycle will undergo a much smaller acceleration. In fact, with all other factors equal, doubling the mass and applying the same extra force will produce an acceleration of only half as much (figure 2.20). An even more massive friend would reduce the acceleration even more. If you triple the mass and apply the same extra force, the acceleration will be one-third as much. Recall that when a

Figure 2.18
This bicycle rider knows about the relationship between force, acceleration, and mass.

Figure 2.19
At a constant velocity the force of tire friction (F_1) and the force of air resistance (F_2) have a sum that equals the force applied (F_a). The net force is therefore zero.

Figure 2.20
More mass results in less acceleration when the same force is applied. With the same force applied, the riders and bike with twice the mass will have half the acceleration, with all other factors constant. Note that the second rider is not pedaling.
relationship between two quantities shows that one quantity increases as another decreases, in the same ratio, the quantities are said to be inversely proportional.

The acceleration of an object depends on both the net force applied and the mass of the object. The second law of motion is as follows:

The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to the mass of the object.

If we express force in appropriate units we can write this statement as an equation,

\[a = \frac{F}{m} \]

By solving for \(F \) we rearrange the equation into the form it is most often expressed,

\[F = ma \]

equation 2.3

In the metric system you can see that the units for force will be the units for mass (\(m \)) times acceleration (\(a \)). The unit for mass is \(\text{kg} \) and the unit for acceleration is \(\text{m/s}^2 \). The combination of these units, \((\text{kg}) (\text{m}/\text{s}^2) \) is a unit of force called the **newton** (N), in honor of Isaac Newton. So,

\[\text{1 newton} = 1 \text{ N} = 1 \text{ kg} \cdot \text{m/s}^2 \]

Newton's second law of motion is the essential idea of his work on motion. According to this law there is always a relationship between the acceleration, a net force, and the mass of an object. Implicit in this statement are two understandings, (1) that we are talking about the net force, meaning total external force acting on an object, and (2) that the motion statement is concerned with acceleration, not velocity.

Weight and Mass

What is the meaning of weight—is it the same concept as mass? Weight is a familiar concept to most people, and in everyday language the word is often used as having the same meaning as mass. In physics, however, there is a basic difference between weight and mass and this difference is very important in Newton's explanation of motion and the causes of motion.

Mass is defined as the property that determines how much an object resists a change in its motion. The greater the mass the greater the inertia, or resistance to change in motion. Consider, for example, that it is easier to push a small car into motion than to push a large truck into motion. The truck has more mass, and therefore more inertia. Newton originally defined mass as the “quantity of matter” in an object, and this definition is intuitively appealing. However, Newton needed to measure inertia because of its obvious role in motion and redefined mass as a measure of inertia.

You could use Newton's second law to measure a mass by exerting a force on the mass and measuring the resulting acceleration. This is not very convenient, so masses are usually measured on a balance by comparing the force of gravity acting on a standard mass compared to the force of gravity acting on the unknown mass.

The force of gravity acting on a mass is the **weight** of an object. Weight is a force and has different units (N) from those of mass (kg). Since weight is a measure of the force of gravity acting on an object, the force can be calculated from Newton's second law of motion,

\[F = ma \]

or \[\text{downward force} = (\text{mass})(\text{acceleration due to gravity}) \]

or \[\text{weight} = (\text{mass})(g) \]

or \[w = mg \]

equation 2.4

You learned previously that \(g \) is the symbol used to represent acceleration due to gravity. Near the earth’s surface, \(g \) has an approximate value of \(9.8 \text{ m/s}^2 \). To understand how \(g \) is applied to an object not moving, consider a ball you are holding in your hand. By supporting the weight of the ball you hold it stationary, so the upward force of your hand and the downward force of the ball (its weight) must add to a net force of zero. When you let go of the ball the gravitational force is the only force acting on the ball. The ball's weight is then the net force that accelerates it at \(g \), the acceleration due to gravity. Thus, \(F_{\text{net}} = w = ma = mg \). The weight of the ball never changes in a given location, so its weight is always equal to \(w = mg \), even if the ball is not accelerating.

The important thing to remember is that **pounds** and **newtons** are units of force (table 2.1). A **kilogram**, on the other hand, is a measure of **mass**. Thus the English unit of 1.0 lb is comparable to the metric unit of 4.5 N (or 0.22 lb is equivalent to 1.0 N). Conversion tables sometimes show how to convert from pounds (a unit of weight) to kilograms (a unit of mass). This is possible because weight and mass are proportional in a given location on the surface of the earth. Using conversion factors from inside the front cover of this book, see if you can express your weight in pounds and newtons and your mass in kilograms.
Newton’s Third Law of Motion

Newton’s first law of motion states that an object retains its state of motion when the net force is zero. The second law states what happens when the net force is not zero, describing how an object with a known mass moves when a given force is applied. The two laws give one aspect of the concept of a force; that is, if you observe that an object starts moving, speeds up, slows down, or changes its direction of travel, you can conclude that an unbalanced force is acting on the object. Thus, any change in the state of motion of an object is caused by a known force. Newton did not have astronauts and satellites to think about, but this is the kind of reasoning he did when he concluded that forces always occur in matched pairs that are equal and opposite. Thus the third law of motion is as follows:

Whenever two objects interact, the force exerted on one object is equal in strength and opposite in direction to the force exerted on the other object.

The third law states that forces always occur in matched pairs that act in opposite directions and on two different bodies. Sometimes the third law of motion is expressed as follows: “For every action there is an equal and opposite reaction,” but this can be misleading. Neither force is the cause of the other. The forces are at every instant the cause of each other and they appear and disappear at the same time. If you are going to describe the force exerted on a satellite by an astronaut, then you must realize that there is a simultaneous force exerted on the astronaut by the satellite. The forces (astronaut on satellite and satellite on astronaut) are equal in magnitude but opposite in direction.

Perhaps it would be more common to move a satellite with a small rocket. A satellite is maneuvered in space by firing a rocket in the direction opposite to the direction someone wants to move the satellite. Exhaust gases (or compressed gases) are accelerated in one direction, and exert an equal but opposite force on the satellite that accelerates it in the opposite direction. This is another example of the third law.

Consider how the pairs of forces work on the earth’s surface. You walk by pushing your feet against the ground (figure 2.22). Of course you could not do this if it were not for friction. You would slide as on slippery ice without friction. But since friction does exist, you exert a backward horizontal force on the ground, and, as the third law explains, the ground exerts an equal and opposite force on you. You accelerate forward from the net force as explained by the second law. If the earth had the same mass as you, however, it would accelerate backward at the
same rate that you were accelerated forward. The earth is much more massive than you, however, so any acceleration of the earth is a vanishingly small amount. The overall effect is that you are accelerated forward by the force the ground exerts on you.

Return now to the example of riding a bicycle that was discussed previously. What is the source of the \(F = ma \) that will affect the forward motion of the bike system? The only forces that will affect the forward motion of the bike system are the force of the ground pushing it forward and the frictional forces that oppose the forward motion. This is another example of the third law.

MOMENTUM

Sportscasters often refer to the momentum of a team, and newscasters sometimes refer to an election where one of the candidates has momentum. Both situations describe a competition where one side is moving toward victory and it is difficult to stop. It seems appropriate to borrow this term from the physical sciences because momentum is a property of movement. It takes a longer time to stop something from moving when it has a lot of momentum. The physical science concept of momentum is closely related to Newton’s laws of motion. Momentum \((p)\) is defined as the product of the mass \((m)\) of an object and its velocity \((v)\),

\[
momentum = mass \times velocity
\]

or

\[
p = mv
\]

equation 2.5

The astronaut in figure 2.23 has a mass of 60.0 kg and a velocity of 0.750 m/s as a result of the interaction with the satellite. The resulting momentum is therefore \((60.0 \text{ kg})(0.750 \text{ m/s})\), or 45.0 kg m/s. As you can see, the momentum would be greater if the astronaut had acquired a greater velocity or if the astronaut had a greater mass and acquired the same velocity. Momentum involves both the inertia and the velocity of a moving object.

Figure 2.22
The football player’s foot is pushing against the ground, but it is the ground pushing against the foot that accelerates the player forward to catch a pass.

Figure 2.23
Both the astronaut and the satellite received a force of 30.0 N for 1.50 s when they pushed on each other. Both then have a momentum of 45.0 kg m/s in the opposite direction. This is an example of the law of conservation of momentum.
Swimming Scallop

Newton’s laws of motion apply to animal motion as well as that of satellites and automobiles. Consider, for example, the dilemma of a growing scallop. A scallop is the shell often seen as a logo for a certain petroleum company, a fan-shaped shell with a radiating fluted pattern (box figure 2.2). The scallop is a marine mollusk that is most unusual since it is the only clamlike mollusk that is capable of swimming. By opening and closing its shell it is able to jet propel itself in a way by forcing water from the interior of the shell in a jetlike action. The popular seafood called “scallops” is the edible muscle that the scallop uses to close its shell.

Scallops are able to swim by orienting their shell at a proper angle and maintaining a minimum acceleration to prevent sinking. For example, investigations have found that one particular species of scallop must force enough water backward to move about 6 body lengths per second with a 10 degree angle of attack to maintain level swimming. Such a swimming effort can be maintained for up to about 20 seconds, enabling the scallop to escape predation or some other disturbing condition.

A more massive body limits the swimming ability of the scallop, as a greater force is needed to give a greater mass the same acceleration (as you would expect from Newton’s second law of motion). This problem becomes worse as the scallop grows larger and larger without developing a greater and greater jet force.

Conservation of Momentum

Notice that the momentum acquired by the satellite in figure 2.23 is also 45.0 kg·m/s. The astronaut gained a certain momentum in one direction, and the satellite gained the very same momentum in the opposite direction. Newton originally defined the second law in terms of a change of momentum being proportional to the net force acting on an object. Since the third law explains that the forces exerted on both the astronaut and satellite were equal and opposite, you would expect both objects to acquire equal momentum in the opposite direction. This result is observed any time objects in a system interact and the only forces involved are those between the interacting objects (figure 2.23). This statement leads to a particular kind of relationship called a law of conservation. In this case, the law applies to momentum and is called the law of conservation of momentum:

The total momentum of a group of interacting objects remains the same in the absence of external forces.

Conservation of momentum, energy, and charge are among examples of conservation laws that apply to everyday situations. These situations always illustrate two understandings, that (1) each conservation law is an expression of symmetry that describes a physical principle that can be observed; and (2) each law holds regardless of the details of an interaction or how it took place. Since the conservation laws express symmetry that always occurs, they tell us what might be expected to happen, and what might be expected not to happen in a given situation. The symmetry also allows unknown quantities to be found by analysis. The law of conservation of momentum, for example, is useful in analyzing motion in simple systems of collisions such as those of billiard balls, automobiles, or railroad cars. It is also useful in measuring action and reaction interactions, as in rocket propulsion, where the backward momentum of the exhaust gases equals the momentum given to the rocket in the opposite direction (figure 2.24). When this is done, momentum is always found to be conserved.

Impulse

Have you ever heard that you should “follow through” when hitting a ball? When you follow through, the bat is in contact with the ball for a longer period of time. The force of the hit is important, of course, but both the force and how long the force is applied determine the result. The product of the force and the time of contact is called impulse. This quantity can be expressed as

\[\text{impulse} = Ft \]

where \(F \) is the force applied during the time of contact \((t) \). The impulse you give the ball determines how fast the ball will move, and thus how far it will travel.

Impulse is related to the change of motion of a ball of a given mass, so the change of momentum \((mv) \) is brought about by the impulse. This can be expressed as

\[\Delta p = Ft \]

\[\text{equation 2.6} \]
where Δp is a change of momentum. You “follow through” while hitting a ball in order to increase the contact time. If the same force is used, a longer contact time will result in a greater impulse. A greater impulse means a greater change of momentum, and since the mass of the ball does not change, the overall result is a moving ball with a greater velocity. This means following through will result in more distance from hitting the ball with the same force. That’s why it is important to follow through when you hit the ball.

Now consider bringing a moving object to a stop by catching it. In this case the mass and the velocity of the object are fixed at the time you catch it, and there is nothing you can do about these quantities. The change of momentum is equal to the impulse, and the force and time of force application can be manipulated. For example, consider how you would catch a raw egg that is tossed to you. You would probably move your hands with the egg as you catch it, increasing the contact time. Increasing the contact time has the effect of reducing the force, since $\Delta p = Ft$. You changed the force applied by increasing the contact time, and hopefully you reduced the force sufficiently so the egg does not break.

Contact time is also important in safety. Automobile airbags, the padding in elbow and knee pads, and the plastic barrels off the highway in front of overpass supports are examples of designs intended to increase the contact time. Again, increasing the contact time reduces the force, since $\Delta p = Ft$. The impact force is reduced and so are the injuries. Think about this the next time you see a car that was crumpled and bent by a collision. The driver and passengers were probably saved from injuries that are more serious since more time was involved in stopping the car that crumpled. A car that crumples is a safer car in a collision.

FORCES AND CIRCULAR MOTION

Consider a communications satellite that is moving at a uniform speed around the earth in a circular orbit. According to the first law of motion there must be forces acting on the satellite, since it does not move off in a straight line. The second law of motion also indicates forces, since an unbalanced force is required to change the motion of an object. Recall that acceleration is defined as a change in velocity, and that velocity has both strength and direction. Velocity is changed by a change in speed, direction, or both speed and direction. The satellite in a circular orbit is continuously being accelerated. This means that there is a continuously acting unbalanced force on the satellite that pulls it out of a straight-line path.

The force that pulls an object out of its straight-line path and into a circular path is called a centripetal (center-seeking) force. Perhaps you have swung a ball on the end of a string in a horizontal circle over your head. Once you have the ball moving, the only unbalanced force (other than gravity) acting on the ball is the centripetal force your hand exerts on the ball through the

CONCEPTS APPLIED

Momentum Experiment

The popular novelty item of a frame with five steel balls hanging from strings can be used to observe momentum exchanges during elastic collisions. When one ball is pulled back and released, it stops as it transfers its momentum to the ball it strikes and the momentum is transferred ball to ball until the end ball swings out. Make some predictions, then do the experiment for the following. What happens when: (1) Two balls are released together on one side. (2) One ball on each side is released at the same time. (3) Two balls on one side are released together as two balls are simultaneously released on the other side. (4) Two balls on one side are released together as a single ball is simultaneously released on the other side. Analyze the momentum transfers down the line for each situation.

As an alternative to use of the swinging balls, consider a similar experiment using a line of marbles in contact with each other in a grooved ruler. Here, you could also vary the mass of marbles in collisions.
Connections . . .

Circular Fun

Amusement park rides are designed to accelerate your body, sometimes producing changes in the acceleration (jerk) as well. This is done by changes in speed, changes in the direction of travel, or changes in both direction and speed. Many rides move in a circular path, since such movement is a constant acceleration.

Why do people enjoy amusement park rides? It is not the high speed, since your body is not very sensitive to moving at a constant speed. Moving at a steady 600 mi/h in an airplane, for example, provides little sensation when you are seated in an aisle seat in the central cabin.

Your body is not sensitive to high-speed traveling, but it is sensitive to acceleration and changes of acceleration. Acceleration affects the fluid of the speed around the circle (v^2) and inversely proportional to the radius of the circle (r). (A smaller radius requires a greater acceleration.) Therefore, the acceleration of an object moving in uniform circular motion (a_c) is

$$a_c = \frac{v^2}{r}$$

equation 2.7

The magnitude of the centripetal force of an object with a mass (m) that is moving with a velocity (v) in a circular orbit of a radius (r) can be found by substituting equation 2.7 in $F = ma$, or

$$F = \frac{mv^2}{r}$$

equation 2.8

NEWTON’S LAW OF GRAVITATION

You know that if you drop an object, it always falls to the floor. You define **down** as the direction of the object’s movement and **up** as the opposite direction. Objects fall because of the force of gravity, which accelerates objects at $g = 9.8 \text{ m/s}^2$ (32 ft/s2) and gives them weight, $w = mg$.

Gravity is an attractive force, a pull that exists between all objects in the universe. It is a mutual force that, just like all other forces, comes in matched pairs. Since the earth attracts you with a certain force, you must attract the earth with an exact opposite force. The magnitude of this force of mutual attraction depends on several variables. These variables were first described by Newton in Principia, his famous book on motion that was printed in 1687. Newton had, however, worked out his ideas much earlier, by the age of twenty-four, along with ideas about his laws of motion and the formula for centripetal acceleration. In a biography written by a friend in 1752, Newton stated that the notion of gravitation came to mind during a time of thinking that “was occasioned by the fall of an apple.” He was thinking about why the moon stays in orbit around the earth rather than falling to the earth.
When do astronauts experience weightlessness, or “zero gravity”? Theoretically, the gravitational field of the earth extends to the whole universe. You know that it extends to the moon, and indeed, even to the sun some 93 million miles away. There is a distance, however, at which the gravitational force must become immeasurably small. But even at an altitude of 20,000 miles above the surface of the earth, gravity is measurable. At 20,000 miles, the value of g is about 1 ft/s² (0.3 m/s²) compared to 32 ft/s² (9.8 m/s²) on the surface. Since gravity does exist at these distances, how can an astronaut experience “zero gravity”?

Gravity does act on astronauts in spacecraft that are in orbit around the earth. The spacecraft stays in orbit, in fact, because of the gravitational attraction and because it has the correct tangential speed. If the tangential speed were less than 5 mi/s, the spacecraft would return to the earth. Astronauts fire their retro-rockets, which slow the tangential speed, causing the spacecraft to fall down to the earth. If the tangential speed were more than 7 mi/s, the spacecraft would fly off into space. The spacecraft stays in orbit because it has the right tangential speed to continuously “fall” around and around the earth. Gravity provides the necessary centripetal force that causes the spacecraft to fall out of its natural straight-line motion.

Since gravity is acting on the astronaut and spacecraft, the term zero gravity is not an accurate description of what is happening. The astronaut, spacecraft, and everything in it are experiencing apparent weightlessness because they are continuously falling toward the earth. Everything seems to float because everything is falling together. But, strictly speaking, everything still has weight, because weight is defined as a gravitational force acting on an object ($w = mg$).

Whether weightlessness is apparent or real, however, the effects on people are the same.

Long-term orbital flights have provided evidence that the human body changes from the effect of weightlessness. Bones lose calcium and other minerals, the heart shrinks to a much smaller size, and leg muscles shrink so much on prolonged flights that astronauts cannot walk when they return to the earth. These changes occur because on the earth humans are constantly subjected to the force of gravity. The nature of the skeleton and the strength of the muscles are determined by how the body reacts to this force. Metabolic pathways and physiological processes that maintain strong bones and muscles evolved having to cope with a specific gravitational force. When we are suddenly subjected to a place where gravity is significantly different, these processes result in weakened systems. If we had evolved on a planet with a different gravitational force, we would have muscles and bones that were adapted to the gravity on that planet. All organisms have evolved in a world with gravity. Many kinds of organisms have been used in experiments in space to try to develop a better understanding of how their systems work.

The problems related to prolonged weightlessness must be worked out before long-term weightless flights can take place. One solution to these problems might be a large, uniformly spinning spacecraft. The astronauts tend to move in a straight line, and the side of the turning spacecraft (now the “floor”) exerts a force on them to make them go in a curved path. This force would act as an artificial gravity.

than moving off in a straight line as would be predicted by the first law of motion. Perhaps the same force that attracts the moon toward the earth, he thought, attracts the apple to the earth. Newton developed a theoretical equation for gravitational force that explained not only the motion of the moon but the motion of the whole solar system. Today, this relationship is known as the universal law of gravitation:

Every object in the universe is attracted to every other object with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distances between them.

In symbols, m_1 and m_2 can be used to represent the masses of two objects, d the distance between their centers, and G a constant of proportionality. The equation for the law of universal gravitation is therefore

$$F = G \frac{m_1 m_2}{d^2}$$

equation 2.9

This equation gives the magnitude of the attractive force that each object exerts on the other. The two forces are oppositely directed. The constant G is a universal constant, since the law applies to all objects in the universe. It was first measured experimentally by Henry Cavendish in 1798. The accepted value today is $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$. Do not confuse G, the universal constant, with g, the acceleration due to gravity on the surface of the earth.

Figure 2.26

The variables involved in gravitational attraction. The force of attraction (F) is proportional to the product of the masses (m_1, m_2) and inversely proportional to the square of the distance (d) between the centers of the two masses.

Thus, the magnitude of the force of gravitational attraction is determined by the mass of the two objects and the distance between them (figure 2.26). The law also states that every object is attracted to every other object. You are attracted to all the objects around you—chairs, tables, other people, and so forth. Why don’t you notice the forces between you and other objects? One or both of the interacting objects must be quite massive before a noticeable force results from the interaction. That is why you
do not notice the force of gravitational attraction between you and objects that are not very massive compared to the earth. The attraction between you and the earth overwhelmingly predominates, and that is all you notice.

The acceleration due to gravity, \(g \), is about 9.8 m/s\(^2\) and is practically a constant for relatively short distances above the surface. Notice, however, that Newton’s law of gravitation is an inverse square law. This means if you double the distance, the force is \(1/(2)^2 \) or 1/4 as great. If you triple the distance, the force is \(1/(3)^2 \) or 1/9 as great. In other words, the force of gravitational attraction and \(g \) decrease inversely with the square of the distance from the earth’s center.

Newton was able to calculate the acceleration of the moon toward the earth, about 0.0027 m/s\(^2\). The moon “falls” toward the earth because it is accelerated by the force of gravitational attraction. This attraction acts as a centripetal force that keeps the moon from following the straight-line path shown by the dashed line to position A. It was pulled to position B by gravity (0.0027 m/s\(^2\)) and thus “fell” toward the earth the distance from the dashed line to B, resulting in a somewhat circular path.

Figure 2.27
Gravitational attraction acts as a centripetal force that keeps the moon from following the straight-line path shown by the dashed line to position A. It was pulled to position B by gravity (0.0027 m/s\(^2\)) and thus “fell” toward the earth the distance from the dashed line to B, resulting in a somewhat circular path.

SUMMARY

Motion can be measured by speed, velocity, and acceleration. Speed is a measure of how fast something is moving. It is a ratio of the distance covered between two locations to the time that elapsed while moving between the two locations. The average speed considers the distance covered during some period of time, while the instantaneous speed is the speed at some specific instant. Velocity is a measure of the speed and direction of a moving object. Acceleration is a change of velocity per unit of time.

A force is a push or a pull that can change the motion of an object. The net force is the sum of all the forces acting on an object.

Galileo determined that a continuously applied force is not necessary for motion and defined the concept of inertia: an object remains in unchanging motion in the absence of a net force. Galileo also determined that falling objects accelerate toward the earth’s surface independent of the weight of the object. He found the acceleration due to gravity, \(g \), to be 9.8 m/s\(^2\) (32 ft/s\(^2\)), and the distance an object falls is proportional to the square of the time of free fall (\(d \approx \frac{1}{2}gt^2 \)).

Compound motion occurs when an object is projected into the air. Compound motion can be described by splitting the motion into vertical and horizontal parts. The acceleration due to gravity, \(g \), is a constant that is acting at all times and acts independently of any motion that an object has. The path of an object that is projected at some angle to the horizon is therefore a parabola.

Newton’s first law of motion is concerned with the motion of an object and the lack of a net force. Also known as the law of inertia, the first law states that an object will retain its state of straight-line motion (or state of rest) unless a net force acts on it.

The second law of motion describes a relationship between net force, mass, and acceleration. A newton of force is the force needed to give a 1.0 kg mass an acceleration of 1.0 m/s\(^2\).

Weight is the downward force that results from the earth’s gravity acting on the mass of an object. Weight is measured in newtons in the metric system and pounds in the English system.

Newton’s third law of motion states that forces are produced by the interaction of two different objects. These forces always occur in matched pairs that are equal in size and opposite in direction.

Momentum is the product of the mass of an object and its velocity. In the absence of external forces, the momentum of a group of objects...
interacting objects always remains the same. This relationship is the law of conservation of momentum. Impulse is a change of momentum equal to a force times the time of application.

An object moving in a circular path must have a force acting on it, since it does not move in a straight line. The force that pulls an object out of its straight-line path is called a centripetal force. The centripetal force needed to keep an object in a circular path depends on the mass of the object, its velocity, and the radius of the circle.

The universal law of gravitation is a relationship between the masses of two objects, the distance between the objects, and a proportionality constant. Newton was able to use this relationship to show that gravitational attraction provides the centripetal force that keeps the moon in its orbit.

Summary of Equations

1. **average speed**

 \[\bar{v} = \frac{d}{t} \]

2. **acceleration**

 \[a = \frac{v_f - v_i}{t} \]

3. **force**

 \[F = ma \]

4. **weight**

 \[w = mg \]

5. **momentum**

 \[p = mv \]

6. **change of momentum**

 \[\Delta p = Ft \]

7. **centripetal acceleration**

 \[a_c = \frac{v^2}{r} \]

8. **centripetal force**

 \[F = \frac{mv^2}{r} \]

9. **gravitational force**

 \[F = G \frac{m_1 m_2}{d^2} \]

Key Terms

- acceleration (p. 24)
- centripetal force (p. 40)
- first law of motion (p. 32)
- force (p. 26)
- free fall (p. 29)
- impulse (p. 39)
- inertia (p. 29)
- law of conservation of momentum (p. 39)
- mass (p. 36)
- momentum (p. 38)
- net force (p. 26)
- newton (p. 36)
- second law of motion (p. 36)
- speed (p. 22)
- third law of motion (p. 37)
- universal law of gravitation (p. 42)

Applying the Concepts

1. A quantity of 5 m/s² is a measure of
 - (a) metric area.
 - (b) acceleration.
 - (c) speed.
 - (d) velocity.

2. An automobile has how many different devices that can cause it to undergo acceleration?
 - (a) none
 - (b) one
 - (c) two
 - (d) three or more

3. Ignoring air resistance, an object falling toward the surface of the earth has a velocity that is
 - (a) constant.
 - (b) increasing.
 - (c) decreasing.
 - (d) acquired instantaneously, but dependent on the weight of the object.

4. Ignoring air resistance, an object falling near the surface of the earth has an acceleration that is
 - (a) constant.
 - (b) increasing.
 - (c) decreasing.
 - (d) dependent on the weight of the object.

5. Two objects are released from the same height at the same time, and one has twice the weight of the other. Ignoring air resistance,
 - (a) the heavier object hits the ground first.
 - (b) the lighter object hits the ground first.
 - (c) they both hit at the same time.
 - (d) whichever hits first depends on the distance dropped.

6. A ball rolling across the floor slows to a stop because
 - (a) there is a net force acting on it.
 - (b) the force that started it moving wears out.
 - (c) the forces are balanced.
 - (d) the net force equals zero.
7. Considering the forces on the system of you and a bicycle as you pedal the bike at a constant velocity in a horizontal straight line,
 (a) the force you are exerting on the pedal is greater than the resisting forces.
 (b) all forces are in balance, with the net force equal to zero.
 (c) the resisting forces of air and tire friction are less than the force you are exerting.
 (d) the resisting forces are greater than the force you are exerting.

8. If you double the unbalanced force on an object of a given mass, the acceleration will be
 (a) doubled.
 (b) increased fourfold.
 (c) increased by one-half.
 (d) increased by one-fourth.

9. If you double the mass of a cart while it is undergoing a constant unbalanced force, the acceleration will be
 (a) doubled.
 (b) increased fourfold.
 (c) half as much.
 (d) one-fourth as much.

10. Doubling the distance between the center of an orbiting satellite and the center of the earth will result in what change in the gravitational attraction of the earth for the satellite?
 (a) one-half as much
 (b) one-fourth as much
 (c) twice as much
 (d) four times as much

11. If a ball swinging in a circle on a string is moved twice as fast, the force on the string will be
 (a) twice as great.
 (b) four times as great.
 (c) one-half as much.
 (d) one-fourth as much.

12. A ball is swinging in a circle on a string when the string length is doubled. At the same velocity, the force on the string will be
 (a) twice as great.
 (b) four times as great.
 (c) one-half as much.
 (d) one-fourth as much.

Answers
1. b 2. d 3. b 4. a 5. c 6. a 7. b 8. a 9. c 10. b 11. b 12. c
PARALLEL EXERCISES

The exercises in groups A and B cover the same concepts. Solutions to group A exercises are located in appendix D.

Note: Neglect all frictional forces in all exercises.

Group A

1. How far away was a lightning strike if thunder is heard 5.00 seconds after seeing the flash? Assume that sound traveled at 350.0 m/s during the storm.
2. What is the acceleration of a car that moves from rest to 15.0 m/s in 10.0 s?
3. What is the average speed of a truck that makes a 285-mile trip in 5.0 hours?
4. What force will give a 40.0 kg grocery cart an acceleration of 2.4 m/s²?
5. An unbalanced force of 18 N will give an object an acceleration of 3 m/s². What force will give this very same object an acceleration of 10 m/s²?
6. A rocket pack with a thrust of 100 N accelerates a weightless astronaut at 0.5 m/s² through free space. What is the mass of the astronaut and equipment?
7. What is the momentum of a 100 kg football player who is moving at 6 m/s?
8. A car weighing 13,720 N is speeding down a highway with a velocity of 91 km/h. What is the momentum of this car?
9. A 15 g bullet is fired with a velocity of 200 m/s from a 6 kg rifle. What is the recoil velocity of the rifle?
10. A net force of 5,000.0 N accelerates a car from rest to 90.0 km/h in 5.0 s. (a) What is the mass of the car? (b) What is the weight of the car?
11. How much centripetal force is needed to keep a 0.20 kg ball on a 1.50 m string moving in a circular path with a speed of 3.0 m/s?
12. On the earth, an astronaut and equipment weigh 1,960.0 N. While weightless in space, the astronaut fires a 100 N rocket backpack for 2.0 s. What is the resulting velocity of the astronaut and equipment?

Group B

1. How many meters away is a cliff if an echo is heard one-half second after the original sound? Assume that sound traveled at 343 m/s on that day.
2. What is the acceleration of a car that moves from a speed of 5.0 m/s to a speed of 15 m/s during a time of 6.0 s?
3. What is the average speed of a car that travels 270.0 miles in 4.50 hours?
4. What force would an asphalt road have to give a 6,000 kg truck in order to accelerate it at 2.2 m/s² over a level road?
5. If a space probe weighs 39,200 N on the surface of the earth, what will be the mass of the probe on the surface of Mars?
6. On the earth, an astronaut and equipment weigh 1,960 N. Weightless in space, the motionless astronaut and equipment are accelerated by a rocket pack with a 100 N thruster that fires for 2 s. What is the resulting final velocity?
7. What is the momentum of a 30.0 kg shell fired from a cannon with a velocity of 500 m/s?
8. What is the momentum of a 39.2 N bowling ball with a velocity of 7.00 m/s?
9. A 30.0 kg shell fired from a 2,000 kg cannon will have a velocity of 500 m/s. What is the resulting velocity of the cannon?
10. A net force of 3,000.0 N accelerates a car from rest to 36.0 km/h in 5.00 s. (a) What is the mass of the car? (b) What is the weight of the car?
11. What tension must a 50.0 cm length of string support in order to whirl an attached 1,000.0 g stone in a circular path at 5.00 m/s?
12. A 200.0 kg astronaut and equipment move with a velocity of 2.00 m/s toward an orbiting spacecraft. How long will the astronaut need to fire a 100.0 N rocket backpack to stop the motion relative to the spacecraft?