Standards of Program Quality and Effectiveness for the Subject Matter Requirement for the Multiple Subject Teaching Credential

State of California

California Commission on Teacher Credentialing

September, 2001
Standard 9: Technology in the Subject Matter Program

Study and utilization of current and emerging technologies are integral characteristics of the subject matter program for prospective multiple subject teachers.

Required Elements for Standard 9: Technology in the Subject Matter Program

9.1 The institution provides adequate access to technology resources for prospective multiple subject teachers in the subject matter program.

9.2 In the program, prospective teachers use current and emerging technologies in efforts to increase their subject matter knowledge and understanding. Prospective teachers learn to use technologies for multiple applications including research, analysis, communication and presentation applications. The program selects technologies on the basis of their effective and appropriate uses.

9.3 To the greatest extent possible, prospective teachers in the program analyze, compare and evaluate technologies as effective tools of study and learning in the seven major subject areas of study.

9.4 In the program, prospective teachers are introduced to ethical and social issues related to technology, including issues of access, equity, privacy, the protection of children, and ownership of intellectual property.
Content Specifications in Science

Part 1: Content Domains for Subject Matter Understanding and Skill in Science

Domain 1: Physical Science

1.1 **Structure and Properties of Matter.** Candidates for Multiple Subject Teaching Credentials understand the physical properties of solids, liquids, and gases, such as color, mass, density, hardness, and electrical and thermal conductivity. They know that matter can undergo physical changes (e.g., changes in state such as the evaporation and freezing of water) and chemical changes (i.e., atoms in reactants rearrange to form products with new physical and chemical properties). They know that matter consists of atoms and molecules in various arrangements, and can give the location and motions of the parts of an atom (protons, neutrons, and electrons). They can describe the constituents of molecules and compounds, naming common elements (e.g., hydrogen, oxygen, and iron), and explain how elements are organized on the Periodic Table on the basis of their atomic and chemical properties. They can describe characteristics of solutions (such as acidic, basic, and neutral solutions) and they know examples with different pH levels such as soft drinks, liquid detergents, and water. They know that mixtures may often be separated based on physical or chemical properties.
Content Specifications in Science (Continued)

1.2 Principles of Motion and Energy. Candidates for Multiple Subject Teaching Credentials describe an object's motion based on position, displacement, speed, velocity, and acceleration. They know that forces (pushes and pulls), such as gravity, magnetism, and friction act on objects and may change their motion if these forces are not in balance. They know that "like" electrical charges or magnetic poles produce repulsive forces and "unlike" charges or poles produce attractive forces. They describe simple machines in which small forces are exerted over long distances to accomplish difficult tasks (e.g., using levers or pulleys to move or lift heavy objects). Candidates identify forms of energy including solar, chemical, electrical, magnetic, nuclear, sound, light, and electromagnetic. They know that total energy in a system is conserved but may be changed from one form to another, as in an electrical motor or generator. They understand the difference between heat, (thermal energy) and temperature, and understand temperature measurement systems. Candidates know how heat may be transferred by conduction, convection, and radiation (e.g., involving a stove, the Earth's mantle, or the sun). They describe sources of light including the sun, light bulbs, or excited atoms (e.g., neon in neon lights) and interactions of light with matter (e.g., vision and photosynthesis). They know and can apply the optical properties of waves, especially light and sound, including reflection (e.g., by a mirror) or refraction (e.g., bending light through a prism). They explain conservation of energy resources in terms of renewable and non-renewable natural resources and their use in society.

Domain 2: Life Science

2.1 Structure of Living Organisms and Their Function (Physiology and Cell Biology). Candidates for Multiple Subject Teaching Credentials describe levels of organization and related functions in plants and animals, including, organ systems (e.g., the digestive system), organs, tissues (e.g., ovules in plants, heart chambers in humans), cells, and subcellular organelles (e.g., nucleus, chloroplast, mitochondrion). They know structures and related functions of systems in plants and animals, such as reproductive, respiratory, circulatory, and digestive. They understand principles of chemistry underlying the functioning of biological systems (e.g., carbon's central role in living organisms, water and salt, DNA, and the energetics of photosynthesis).
Content Specifications in Science (Continued)

2.2 Living and Nonliving Components in Environments (Ecology). Candidates for Multiple Subject Teaching Credentials know the characteristics of many living organisms (e.g., growth, reproduction, and stimulus response). They understand the basic needs of all living organisms (e.g., food, water, and space), and can distinguish between environmental adaptations and accommodations. They describe the relationship between the number and types of organisms an ecosystem can support and relationships among members of a species and across species. They illustrate the flow of energy and matter through an ecosystem from sunlight to food chains and food webs (including primary producers, consumers, and decomposers). They identify the resources available in an ecosystem, and describe the environmental factors that support the ecosystem, such as temperature, water, and soil composition.

2.3 Life Cycle, Reproduction, and Evolution (Genetics and Evolution). Candidates for Multiple Subject Teaching Credentials diagram life cycles of familiar organisms (e.g., butterfly, frog, mouse). They explain the factors that affect the growth and development of plants, such as light, gravity, and stress. They distinguish between sexual and asexual reproduction, and understand the process of cell division (mitosis), the types of cells and their functions, and the replication of plants and animals. They distinguish between environmental and genetic sources of variation, and understand the principles of natural and artificial selection. They know how evidence from the fossil record, comparative anatomy, and DNA sequences can be used to support the theory that life gradually evolved on earth over billions of years. They understand the basis of Darwin's theory, that species evolved by a process of natural selection.

Domain 3: Earth and Space Science

3.1 The Solar System and the Universe (Astronomy). Candidates for Multiple Subject Teaching Credentials identify and describe the planets, their motion, and that of other planetary bodies (e.g., comets and asteroids) around the sun. They explain time zones in terms of longitude and the rotation of the earth, and understand the reasons for changes in the observed position of the sun and moon in the sky during the course of the day and from season to season. They name and describe bodies in the universe including the sun, stars, and galaxies.
Content Specifications in Science (Continued)

3.2 **The Structure and Composition of the Earth (Geology).** Candidates for Multiple Subject Teaching Credentials describe the formation and observable physical characteristics of minerals (e.g., quartz, calcite, hornblende, mica, and common ore minerals) and different types of rocks (e.g., sedimentary, igneous, and metamorphic). They identify characteristics of landforms, such as mountains, rivers, deserts, and oceans. They explain chemical and physical weathering, erosion, deposition, and other rock forming and soil changing processes and the formation and properties of different types of soils and rocks. They describe layers of the earth (crust, lithosphere, mantle, and core) and plate tectonics, including its convective source. They explain how mountains are created and why volcanoes and earthquakes occur, and describe their mechanisms and effects. They know the commonly cited evidence supporting the theory of plate tectonics. They identify factors influencing the location and intensity of earthquakes. They describe the effects of plate tectonic motion over time on climate, geography, and distribution of organisms, as well as more general changes on the earth over geologic time as evidenced in landforms and the rock and fossil records, including plant and animal extinction.

3.3 **The Earth's Atmosphere (Meteorology).** Candidates for Multiple Subject Teaching Credentials explain the influence and role of the sun and oceans in weather and climate and the role of the water cycle. They describe causes and effects of air movements and ocean currents (based on convection of air and water) on daily and seasonal weather and on climate.

3.4 **The Earth's Water (Oceanography).** Candidates for Multiple Subject Teaching Credentials compare the characteristics of bodies of water, such as rivers, lakes, oceans, and estuaries. They describe tides and explain the mechanisms causing and modifying them, such as the gravitational attraction of the moon, sun, and coastal topography.
Content Specifications in Science (Continued)

Part II: Subject Matter Skills and Abilities

Applicable to the Content Domains in Science

Candidates for Multiple Subject Teaching Credentials know how to plan and conduct a scientific investigation to test a hypothesis. They apply principles of experimental design, including formulation of testable questions and hypotheses, and evaluation of the accuracy and reproducibility of data. They distinguish between dependent and independent variables and controlled parameters, and between linear and nonlinear relationships on a graph of data. They use scientific vocabulary appropriately (e.g., observation, organization, experimentation, inference, prediction, evidence, opinion, hypothesis, theory, and law). They can select and use a variety of scientific tools (e.g., microscopes) and know how to record length, mass, and volume measurements using the metric system. They interpret results of experiments and interpret events by sequence and time (e.g., relative age of rocks, phases of the moon) from evidence of natural phenomena. They can communicate the steps in an investigation, record data, and interpret and analyze numerical and non-numerical results using charts, maps, tables, models, graphs, and labeled diagrams. They make appropriate use of print and electronic resources, including the World Wide Web, in preparing for an investigative activity. Candidates communicate the steps and results of a scientific investigation in both verbal and written formats.