1. If the side of one square is the diagonal of a second square, what is the ratio of the area of the first square to the area of the second?

 (a) $\sqrt{2}$
 (b) $2\sqrt{2}$
 (c) $\frac{1}{2}$
 (d) 2
 (e) 4

2. If $y = x^2$ and $x^y \cdot y^x = x^w$ for $x > 0$, then, in terms of x, $w =$

 (a) $x^2 + 2x$
 (b) $x^2 + x + 2$
 (c) $x^2 + 2^x$
 (d) $2x^2$
 (e) $2x^3$

3. How many integers greater than ten and less than one hundred, written in base ten notation, are increased by nine when their digits are reversed?

 (a) 0
 (b) 1
 (c) 8
 (d) 9
 (e) 10

4. If two factors of $2x^3 - hx + k$ are $x + 2$ and $x - 1$, then the value of $|2h - 3k|$ is

 (a) 4 (b) 3 (c) 2 (d) 1 (e) 0

5. Which statement is correct?

 (a) If $x < 0$, then $x^2 > x$
 (b) If $x^2 > 0$, then $x > 0$
 (c) If $x^2 > x$, then $x > 0$
 (d) If $x^2 > x$, then $x < 0$
 (e) If $x < 1$, then $x^2 < x$
6. The sum of the first eighty positive odd integers subtracted from the sum of the first eighty positive even integers is

(a) 0 (b) 20 (c) 40 (d) 60 (e) 80

7. Let x_1 and x_2 be such that $x_1 \neq x_2$ and $3x_i^2 - hx_i = b$, $i = 1, 2$. Then $x_1 + x_2$ equals

(a) $-h/3$
(b) $h/3$
(c) $b/3$
(d) $2b$
(e) $-b/3$

8. Let $f(t) = \frac{t}{1-t}$, $t \neq 1$. If $y = f(x)$, then x can be expressed as:

(a) $f(\frac{1}{y})$
(b) $-f(y)$
(c) $-f(-y)$
(d) $f(-y)$
(e) $f(y)$

9. If N, written in base 2, is 11000, the integer immediately preceding N, written in base 2, is:

(a) 10001
(b) 10010
(c) 10011
(d) 10110
(e) 10111

10. In the figure shown to the right, if the degree measures of the angles are shown, then $x + y =$

(a) 190 (b) 170 (c) 80 (d) 50 (e) 30
11. The arithmetic mean of the fifty-two successive positive integers beginning with 2 is:

(a) 27 (b) 27\(\frac{1}{4}\) (c) 27\(\frac{1}{2}\) (d) 28 (e) 28\(\frac{1}{2}\)

12. In a class of 15 students, there are 7 girls, 6 honor students, and 11 students who are either boys or honor students. How many girls are honor students?

(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

13. The unit digit in the number 2\(^{356}\) is

(a) 0
(b) 2
(c) 4
(d) 6
(e) 8

14. If \(x < -2\), then \(|1 - |1 + x||\) equals

(a) 2 + x
(b) -2 - x
(c) x
(d) -x
(e) -2

15. A solution to the equation \(2^{2x} - 8 \cdot 2^x + 12 = 0\) is \(x =\)

(note: log = log\(_{10}\)).

(a) log 3
(b) \(\frac{1}{2}\) log 6
(c) 1 + log\(\frac{3}{2}\)
(d) 1 + \(\frac{\log 3}{\log 2}\)
(e) None of these.
16. If \(s \) varies inversely as the square of \(t \) and if \(s = 9 \) when \(t = 4 \), then when \(t = 3 \), \(s = \)

(a) 12
(b) 16
(c) 6
(d) 25/4
(e) None of the above.

17. The number of distinct ordered pairs \((x, y)\), where \(x \) and \(y \) have positive integral values satisfying the equation \(x^4y^4 - 10x^2y^2 + 9 = 0 \), is:

(a) 0
(b) 3
(c) 4
(d) 12
(e) infinite.

18. An urn contains 12 red and 16 blue marbles. Two marbles are drawn in succession, without replacing the first marble. What is the probability that both drawn are red?

(a) \(\frac{33}{196} \)
(b) \(\frac{16}{49} \)
(c) \(\frac{9}{16} \)
(d) \(\frac{11}{63} \)
(e) None of the above.

19. AB is a diameter of a circle centered at O. Let C be a point on the circle such that angle BOC is 60°. If the diameter of the circle is 5 inches, then the length of the chord AC in inches is:

(a) 3
(b) \(\frac{5\sqrt{2}}{2} \)
(c) \(\frac{5\sqrt{3}}{2} \)
(d) \(\frac{3}{\sqrt{3}} \)
(e) None of these.
20. A rope 13 feet long is fastened to the top of a pole 12 feet high. If a
cow is tied to the other end of the rope, over how much ground can she
graze?

(a) 25π sq. ft.
(b) 12π sq. ft.
(c) 9π sq. ft.
(d) $\frac{25}{9}\pi$ sq. ft.
(e) None of the above.

21. If $\tan x = \frac{2ab}{a^2-b^2}$, where $a > b > 0$ and $0 < x < 90^\circ$, then $\sin x$ is equal
to

(a) $\frac{a}{b}$
(b) $\frac{b}{a}$
(c) $\frac{\sqrt{a^2-b^2}}{2a}$
(d) $\frac{\sqrt{a^2-b^2}}{2ab}$
(e) $\frac{2ab}{a^2+b^2}$

22. If $x = 1 + 2^p$ and $y = 1 + 2^{-p}$, then y in terms of x is:

(a) $\frac{x+1}{x-1}$
(b) $\frac{x+2}{x-1}$
(c) $\frac{x}{x-1}$
(d) $2 - x$
(e) $\frac{x-1}{x}$
23. If a number N, $N \neq 0$, decreased by four times its reciprocal, equals a given real constant R, then, for this given R, the sum of all such possible values of N is:

(a) $\frac{1}{R}$
(b) R
(c) 4
(d) $\frac{1}{4}$
(e) $-R$

24. The bases of an isosceles trapezoid are 7 and 15. Each base angle is 45°. Find the area of the trapezoid.

(a) 44
(b) 88
(c) 420
(d) 105
(e) None of the above.

25. The shaded region of the xy-plane shown here is the graph of the solution set for:

(a) $|x + y| > 1$
(b) $|x| + 1 > y$
(c) $1 - |x| < y$
(d) $y > |x - 1|$
(e) none of the above