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Shell Morphology of North American Tortoises

DAVID J. GERMANO!
Museum of Southwestern Biology, Department of Biology,
University of New Mexico, Albuquerque 87137

ABSTRACT.—Significant differences exist in adult carapace lengths among the four species
of North American tortoises (Gopherus spp.). However, after measures of whole shell and
scute dimensions are adjusted for these size differences, shape is more similar between the
largest species, G. flavomarginatus, and the smallest species, G. berlandieri, than with either
of the intermediate-sized species, G. polyphemus and G. agassizii. Recent data based on an
analysis of mitochondrial DNA of North American tortoises provide a phylogeny of the
four extant species. A phenogram based on a multivariate analysis of 31 scute and shell
measurements of North American tortoises is not concordant with a phenogram based on
genetic data, although relationships among three major populations of G. agassizii are the
same. Morphometric data are also not concordant with a matrix based on measures of
precipitation and temperature, but are significantly correlated with a matrix based on growth
variables (R* = 0.74, P = 0.029). Other environmental parameters may affect shape of
shells.

INTRODUCTION

Recently, the evolutionary relationships among North American gopher tortoises have
been assessed based on mitochondrial DNA data (Lamb et al., 1989). This work has
supported the conclusions based on skeletal data that indicate that two species groups exist
within the gopher tortoise complex (Auffenberg, 1976; Bramble, 1982). The differences in
skeletal characters have been related to differences in ecology (Bramble, 1982). Some authors
have recognized the genus Xerobates (Scaptochelys in Bramble, 1982) for agassizii and
berlandieri, and Gopherus for polyphemus and flavomarginatus (Bramble, 1982; Lamb et al.,
1989). However, a recent analysis of this group recommends the retention of Gopherus for
all four species (Crumly, 1993). Besides genetic and skeletal differences, shell morphology
varies among species of North American tortoises (True, 1882; Bogert and Oliver, 1945;
Woodbury and Hardy, 1948; Grant, 1960; Brame and Peerson, 1969; Auffenberg, 1976).
Few of these morphological differences have been adequately tested, though, and many are
based on ratios, which may not remove size from shape (Atchley et al., 1976; Albrecht,
1978; Atchley and Anderson, 1978; Reist, 1985; Packard and Boardman, 1987; Jackson et
al., 1990; Jackson and Somers, 1991).

Genetic differences also exist within the geographic range of the desert tortoise Gopherus
agassizii (Jennings, 1985; Rainboth et al., 1989; Lamb et al., 1989). The greatest genetic
differences in G. agassizii populations occur E and W of the Colorado River. Tortoise
populations inhabiting the extreme southern portion of the range exhibit smaller yet sig-
nificant differences (Jennings, 1985; Lamb et al. 1989). Groups formed within the range
of G. agassizii based on genetic data roughly correspond to broad climatic and vegetational
differences: Mojave desert scrub, Sonoran desert vegetation and Sinaloan thornscrub and
deciduous woodland (Germano et al., 1993).

Differences in morphometrics of closely related groups can be due to past selective
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pressures that led to the formation of the Gopherus group, but also can reflect current
ecological differences among the various species. Comparison of morphology among groups
can lead to testable hypotheses concerning performance that directly affect fitness (Arnold,
1983). Fritts (1983) has shown that quantitative differences in shell morphology of domed
and saddleback Galapagos tortoises (Geochelone elephantopus) are related to differences in
feeding and behavioral ecology.

This study quantifies differences in size and shape of the four species of North American
tortoises. I compare differences in shell shape and size and scute morphology to a phenogram
for North American tortoises based on mtDNA. Similar analyses were also performed on
shell morphology of Gopherus agassizii from three distinct regions within its range.

MATERIALS AND METHODS

Data were gathered from museum and field specimens of 70 Gopherus berlandieri, 232
G. agassizii, 55 G. polyphemus and 69 G. flavomarginatus. 1 recorded 32 shell and scute
measurements (Fig. 1; Appendix 1). Whole shells were measured to the nearest 1 mm with
a pair of tree calipers or cloth tape. Scutes were measured to the nearest 0.1 mm with dial
calipers. Measurements were not recorded for broken or misshapen characters. Most mis-
shapen scutes occurred on the carapace, often as a result of additional vertebral or costal
scutes. Sex identification was made using shell characteristics, or from internal palpation
for wild flavomarginatus (G. Aguirre Leon, pers. comm.).

Shell morphology varies within the broad geographic range of agassizii (Bogert and Oliver,
1945; Brame and Peerson, 1969). Thus, I segregated Gopherus agassizii individuals into
Mojave, Sonoran and Sinaloan populations for analyses.

Size differences were analyzed using carapace length (CL) as the measure of size. 1
compared mean and upper decile CLs among adults of each group, and mean and upper
quartile CLs between sexes using ANOVA. Individuals were classified as adults based on
the sizes at which secondary sex characteristics appear: Gopherus berlandieri, 2105 mm CL
(Auffenberg and Weaver, 1969); G. agassizii, 2180 mm CL (Burge and Bradley, 1976;
pers. observ.); G. polyphemus, =200 mm CL (Landers et al., 1982); G. flavomarginatus,
=250 mm CL (Legler and Webb, 1961). Upper decile values reduce the effect of sampling
bias based on age structure (Case, 1976) and, therefore, may depict more accurately adult
size. I used upper quartile values for comparisons between sexes.

Shell measurements covary significantly with body size (Appendix 2). To assess mor-
phometric differences independent of size, I transformed data by using the residuals from
regression analyses to remove as much of the effect of size as possible (Reist, 1985). Pooled
within-group slopes for each variable on CL (Thorpe, 1976; Reist, 1985) were used along
with the grand mean of CL to remove size effects.

After measurements were adjusted for size, I performed principal components analysis
(PCA) using SAS program PRINCOMP (SAS Institute Inc., 1988) to quantify variation
in shell and scute shape. If groups were apparent after PCA, then multivariate analysis of
variance (MANOVA) was employed using the SAS GLM program (SAS Institute Inc.,
1988) to determine the significance of differences in morphometrics among groups. Shape
differences also were compared between sexes using 12 shell and scute characters. Signif-
icance of MANOVAs was determined using the greatest characteristic root (ger) (Harris,
1985). If the overall MANOVA was significant, lower order discriminant functions were
similarly tested. ANOVAs were used to determine which characters varied significantly
across samples when treating characters independently, with overall significance tested using
post hoc critical values (CV) (Harris, 1985);
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F16. 1.—Thirty-two measurements were recorded on shells of North American tortoises. Nine
measurements were taken from the shell and 23 were taken from scutes. Straight-line measurements
of the shell were recorded using tree calipers and included CL, CW1, CW2, CW3, PL, MPL, and
HS. Both CLCL and CLCW are curved-line measurements that were taken with a cloth tape. All
scute measurements are straight-line measurements and were taken with dial calipers. Explanation
of measurement abbreviations is given in Appendix 1

df,

error 0crit
v = df frea * 1 = Ot
These post hoc critical values are more stringent than F values derived for independent
ANOVAs. For those ANOVAs that were significant, comparisons among means were
assessed using Scheffe’s multiple comparison test. This method makes all pairwise com-
parisons and controls for Type I error while possibly inflating Type II error, making this
a conservative test among means (Sokal and Rohlf, 1981; Harris, 1985).

I used the mean values for each size-adjusted variable to form a phenogram and a matrix
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TaABLE 1.—Mean and upper decile carapace lengths for all adults, and mean and upper quartile
carapace lengths for male (M) and female (F) North American tortoises. Among groups, lengths
without common letters are significantly different. Asterisks denote significant differences between
sexes

Carapace length

Upper!

Species Sex Mean (mm) n sD decile (mm) n sD
berlandieri 1553 a 74 27.4 2029 a 7 8.43
M 166.5* 44 27.4 197.7% 11 9.81
F 138.8* 30 17.5 160.0* 8 8.28

agassizit

Mojave 220.2b 180 22.8 262.5b 18 8.89
M 226.8* 96 25.3 258.8* 24 9.89
F 212.9* 74 16.3 233.4* 19 9.87

Sonoran 2323 ¢ 82 23.4 27C5b 8 10.4
M 236.3 36 24.4 263.9 9 9.66

F 232.2 38 23.0 258.1 10 12.6

Sinaloan 218.7 b,c 40 32.1 274.0 b,c 4 10.2

M 209.0* 24 337 251.5 6 24.0
~ F 230.4* 13 21.7 255.5 3 8.50

polyphemus 2461 ¢ 65 26.3 2921 ¢ 7 11.7
M 248.8 29 24.2 281.6 7 6.65

F 242.4 31 27.7 279.3 8 16.9
Sflavomarginatus 311.9d 69 31.7 367.6d 7 8.38
M 300.9* 15 247 318.5* 4 4.04

F 337.8* 19 32.2 369.6* 5 10.4

! Upper quartile means for sexes

of morphological distances among North American tortoises in the same manner as Lamb
et al. (1989) for genetic distance data. The phenogram was constructed by UPGMA clus-
tering using the average linkage algorithm of the BMDP statistical package (Dixon, 1981).
I compared morphological distances to genetic distances given in Lamb et al. (1989, Table
3) using the Mantel test (Mantel, 1967; Sokal, 1979). For the genetic matrix, I used the
average genetic distances among the three clones (al-a3) of the Mojave agassizii from Lamb
et al. (1989) to compare to the Mojave agassizii portion of the morphometric matrix.

I also compared morphological distances to matrices composed of environmental param-
eters and growth measures. Environmental parameters included 20-yr means of monthly
precipitation and temperatures from weather stations within the ranges of each species,
estimates of geometric mean latitude and longitude of the range of each species, and mean
predictability, constancy, and contingency of precipitation data (from Germano, 1989).
Measures of predictability (P), constancy (C) and contingency (M) (Colwell, 1974) were
made for each species’ range. Predictability essentially measures variability with P = 1
indicating an absolutely predictable environment and P = 0 for a completely unpredictable
environment. Constancy and contingency sum to the value of P. Constancy measures the
evenness of rainfall among months and contingency measures the seasonality of rainfall
within a year. These measures of climatic data accurately depict seasonality and variability
of long-term data (Stearns, 1981). Growth measures were taken from an analysis of growth
(Germano, 1989) using Richards’ (1959) growth curves with jackknife confidence intervals
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F1G. 2.—Morphometric space of North American tortoises based on the first two Principal Com-
ponents (PC) of size-adjusted shell and scute measurements. Solid squares = G. agassizii (n = 96, 12
observations hidden); open circles = G. polyphemus (n = 11, 2 observations hidden); asterisks = G.
berlandieri (n = 40, 5 observations hidden); solid triangles = G. flavomarginatus (n = 19)

(Bradley et al., 1984). This analysis gives four growth parameters for each population:
asymptotic size (upper decile CL), weighted mean growth rate, percentage of asymptotic
size achieved at curve inflection, and time period in years to grow from 10 to 90% of
asymptotic size. Also included were the mean and coefficient of variation of the width of
annuli (mm) of the second costal scute and age at first reproduction (from Germano, 1989).

REsuLTS

Adult CL varies significantly across samples (Table 1) with the largest species, Gopherus
flavomarginatus, being almost twice as large as the smallest, G. berlandieri. Gopherus agassizit
from the Mojave Desert are smaller than G. polyphemus, although agassizii from Sonoran
and Sinaloan regions are similar in CL to polyphemus (Table 1). Significant differences in
mean CL also exist between sexes for berlandieri and flavomarginatus, and for agassizii from
the Mojave Desert and from Sinaloan habitats (Tabie 1). The small mean CL of male
agassizii from Sinaloan habitats is due to several individuals <180 mm CL that were
unquestionably males. Two preserved specimens of 156 mm and 168 mm CL showed
distinct plastral indentations and were preserved with their penises everted. Male and female
agassizii from Sinaloan habitats are not significantly different for comparisons of upper
quartile CL (Table 1). Size dimorphism between sexes reversed pattern from the smallest
species to the largest. In berlandieri and agassizii from the Mojave Desert, males are larger
than females; in flavomarginatus, females are larger than males (Table 1).

PCA yielded eight principal components (PC) with eigenvalues >one. The first two PCs
separated tortoises into four groups, which were identifiable as the four species (Fig. 2).
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F16. 3.—Morphometric spaces of populations of G. agassizii based on the first two Principal
Components (PC) of size-adjusted shell and scute measurements. Solid circles = Mojave desert (n =
50, 2 observations hidden); open diamonds = Sonoran desert (n = 30); solid triangles = Sinaloan
habitats (n = 14)

Sexes within these four groups created by PCA were not segregated. For Gopherus agassizii,
PCA gave nine PCs with eigenvalues =1. A plot formed by the first two PCs did not
separate the three populations of agassizi: (Fig. 3).

MANOVA results show significant differences among the species in morphometrics (Fig.
4, Table 2). Adults differ significantly on six of eight whole shell measures and nine of 23
scute measures. Gopherus berlandieri and G. flavomarginatus are the widest and tallest species.
Sinaloan agassizii is narrowest and the most flat. Gopherus berlandieri also has the longest
carapace measured from the anterior edge of the nuchal to the posterior edge of the supra-
caudal (CLCL). This length comes from the elongation of the rear scutes of the carapace
(Table 2) causing the shell to curve downward and turn anteriorly. There are no significant
differences in overall plastron shape among species, but gulars are longest in G. berlandier:
and shortest in Sonoran agassizii. Gulars are significantly widest in flavomarginatus and
polyphemus. Gopherus berlandiert also have the widest anal scutes and the longest anal scute
projections. Gopherus polyphemus, although distinct, is close morphologically to G. agassizii.
Gopherus flavomarginatus is the most distinct morphologically, based on distance in mor-
phological space (Figs. 2 and 4).

The three groups of Gopherus agassizii differ little among themselves in shape when
compared to other tortoise species (Fig. 4). However, comparisons among agassizii inde-
pendent of the other species show that individuals from the three regions are significantly
different morphologically (Fig. 5, Table 2). Gopherus agassizii from the Mojave Desert are
significantly wider than tortoises from Sonoran or Sinaloan habitats. Tortoises from Sinaloan
habitats are the most narrow. Tortoises from the Mojave Desert are more domed than
tortoises from Sinaloan habitats based on a significantly greater height of shell, greater
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Fi1G. 4 —Morphometric areas encompassed by the six groups of North American tortoises based
on the first two Discriminant Functions (DF) from MANOVA of size-adjusted shell and scute
measurements. 1 = Mojave G. agassizii; 2 = Sonoran G. agassizii; 3 = Sinaloan G. agassizii; 4 = G.
polyphemus; 5 = G. berlandiert; 6 = G. flavomarginatus. DF1 accounts for 69.3% of the variance and
DF2 accounts for 14.2%

curved-line carapace length, and curved-line carapace width; tortoises from the Sonoran
Desert are intermediate. In addition, agassizii from the Mojave Desert have significantly
longer gulars than tortoises from the Sonoran Desert, but not longer than tortoises from
Sinaloan habitats. Gopherus agassizii from the Sonoran Desert have a significantly shorter
length of projection of their anal scutes than either tortoises from the Mojave Desert or
Sinaloan habitats.

Sexes of five of the six groups are distinct morphologically (Table 3). The MANOVA
value for agassizii from Sinaloan habitats is not significant between sexes based on the 12
measures used in this analysis. No single character is significant among the five significant
MANOVA comparisons, although several are significant based on ANOVA tests (Table
3). For all groups, males have longer ATW and larger CLCL than females, and fo~ all
groups but agassizii from Sinaloan habitats, males have longer GL, based on ANOVA.
Although male and female Bolson tortoises are not readily distinguishable morphologically
(Morafka, 1982), males are larger than females for 10 of 12 characters tested by ANOVA
(Table 3).

The morphological distance matrix (Table 4) is not concordant with the genetic distance
matrix presented in Lamb et al. (1989; R? = 0.07, P = 0.61, 4 df, t = 0.55). The resultant
phenogram also differs, although relationships among populations of agassizii are the same
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TABLE 2.—Comparison of shell and scute measurements of adult North American tortoises among
groups. Values given are least square means of 31 size-adjusted variables. For comparisons of char-
acters, means without common letters are significantly different. F values from MANOVA (asterisks
denote significant F, * P < 0.05, ** P < 0.01). ber = G. berlandieri; poly = G. polyphemus; flavo =
G. flavornarginatus

Size- agassizii
adjusted F )
character value ber Mojave Sonoran Sinaloan poly flavo

Cwi 22.47** 1827 a 177.5b 169.4 ¢ 162.6 174.3 b,c 185.4 a
Cw2 29.33**  1869a 179.5 172.4b 165.4 172.6 b 188.6 a
CWwW3 33.44** 1915a 182.1 1745 b 169.8 b,c 168.9 ¢ 188.5 a
CLCL 30.44** 3159 296.0a 290.7ab 287.4b 288.1 b 291.5ac
CLCW 72.62** 2853 262.5 a 262.1a 248.5b 268.1 a 307.1¢
PL NS! 239.5 2333 a 228.1b 229.8ab 2319ab 2298ab
MPL NS 212.2 211.8 208.5 208.6 210.3 211.3
HS 37.15%* 114.7 104.4 a,b 99.4 ¢ 96.8 ¢ 100.1 b,c 107.4a
N NS! 129 a 15.5 13.0a 12.8 a 125a 9.5
Vi NS! 49.2 459 a 44.8 a,b 46.4 a 44.2 a,c 43.6 b,c
V2 NS! 45.1ab 46.2 a 45.0a,b 443b 45.6a,b 44.4b
V3 NS 45.9 46.3 45.8 45.4 45.6 44.8
V4 17.86* 55.6 485a 50.8 a,b 50.6 a,b 509b 49.6 a,b
V5 25.91** 59.0 50.4 a 49.6 a 48.5 a,b 449b 47.9 a,b
SC NS! 38.4 348 a 31.6 b,c 30.7b 33.6 a,c 358a
C1 NS! 55.9 54.7 a 529 a 533a 49.1b 50.1b
C2 NSt 50.6 a 48.6 b 48.4b 48.4 a,b 48.9a,b 459
C3 NS! 48.7 a,c 471b 48.9 a,c 47.6 a,b 50.6 ¢ 46.7b
C4 46.35** 55.1 483 a 48.6 a 49.2ab 51.7b 60.6
Mo NS! 324 a 30.5 313a 321a 313a 26.2
GL 30.02** 50.6 a 423 b 369¢ 39.2 b,c 40.0 b,c 47.4a
GW 156.6** 378a 36.6a 378 a 35.4a 47.5 58.6

H 80.78** 44.6 48.9 a 50.2 a 49.1a 37.7 26.1

P NS! 221a 17.5b 17.0b 22.1a 21.8a 219a
A 27.70** 643 a 63.6 a 64.8 a 60.0 69.7 53.8

F NS! 33.4a 29.2b 28.2b 29.5b 33.6a 33.2a
AN NS! 20.6 a 19.7 a 21.2a 20.1a 14.6 20.6 a
AL NS! 39.0a 36.4b 345b 36.1b 32.2 40.3 a
AW 21.94** 751 65.1 a 65.0 a,b 64.9 a,b 61.7 b,c 61.7 a,c
ATL 37.61** 23.0 163 a 12.5 16.1a 18.2a 16.0a
ATW NS! 57.4 49.4 a 45.5a,b 48.1 a,b 47.6 a,b 42.2b

MANOVA 556.77**

' F values were not significant based on MANOVA post-hoc critical values but were significant
based on ANOVA

(Fig. 6). The matrix of shell morphology also is not concordant with a matrix based on
environmental variables (Table 5; R2 = 0.05, P = 0.66, 4 df, t = —0.47), but is concordant
with a matrix based on measures of growth (Table 5; R? = 0.74, P = 0.03, 4 df, t = 3.37).

DiscussioN

The size and shape of shells of North America tortoises differ, although these differences
did not seem to be related to genetic differences or measures of regional climate. The earliest
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F1G. 5.—Morphometric areas encompassed by groups of G. agassizii based on the first two Dis-
criminant Functions (DF) from MANOVA of size-adjusted shell and scute measurements. 1 = Mojave
G. agassizii; 2 = Sonoran G. agassizii; 3 = Sinaloan G. agassizii. DF'1 accounts for 67.8% of the variance
and DF?2 for 32.2%

comparison among North American tortoises, excluding the undiscovered Gopherus flavo-
marginatus, noted the dome shape of the carapace of G. berlandieri as a distinguishing
characteristic from G. agassizu and G. polyphemus (True, 1882). The carapace of G. agassizii
was found to be considerably depressed and nearly flat, whereas that of G. berlandier: was
short and high, slightly marginate and revolute in front, and strongly incurvated behind
(True, 1882). Besides the dome-shaped carapace of G. berlandieri, the shell of G. agassizii
has been described as being longer than wide and wider than high, and that the shell shape
of G. polyphemus and G. agassizii are more similar to each other than either is to that of G.
berlandier: (Woodbury and Hardy, 1948). In a comparison of all four species, a discriminate
function plot of shell morphometrics showed flavomarginatus more similar to polyphemus
and agassizii than to berlandier: (Auffenberg, 1976), although this relationship among species
is similar to differences in shell size.

There were several morphometric characters that I did not measure in this analysis that
are sexually dimorphic. Male berlandieri have a greatly indented posterior portion of the
plastron and noticeably recurved gulars. To a lesser degree these differences are seen in
Gopherus agassizii, but they are less noticeable in G. polyphemus and almost nonexistent in
G. flavomarginatus. 1 did compare 12 size-adjusted characters and found significant differ-
ences between sexes when all characters were combined. However, no one character gave
a significant MANOVA critical value, although several characters were significant when
tested by ANOVA. Overall size differences between the sexes showed a definite pattern.
Males are significantly larger than females in the smaller species (G. berlandier:), equal in
size to females in those intermediate in size (G. agassizii and G. polyphemus), and significantly
smaller than females in the largest species (G. flavomarginatus). In a comparison of sizes
between sexes of selected turtles of the world (Berry and Shine, 1980), males were listed
as larger than females for all four species of Gopherus. This clearly is incorrect, and general
theories of size dimorphism in turtles require more complete information. A more recent
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F1G. 6.—Phenograms based on genetic distances (p) (redrawn from Lamb et al. 1989, Fig. 3A) and
morphometric distances (md). Symbols for populations are given in Table 4

listing of sizes of male and female Gopherus (Gibbons and Lovich, 1990) shows the same
pattern of size reversal as I found. Exactly the opposite pattern of sexual size dimorphism
(males smaller than females in the smaller species and males larger than females in the
larger species) is found in kinosternine turtles (Berry and Shine, 1980; Iverson, 1991). The
reversal of sexual size dimorphism in Gopherus is unexplained, but the larger tortoise species
are more colonial than the smaller species.

Other features that I did not quantify are the degree of anterior carapace revoluteness,
the degree of marginal flaring of the carapace, or the angle of the anterior portion of the
plastron. I measured straightline characters, not angles or deflections. The front portion of
the carapace of Gopherus berlandieri is revolute; that of the other three species is relatively
flat along the margins, including the nuchal (True, 1882; Grant, 1960; Auffenberg, 1976).
In G. berlandieri, the nuchal is sometimes absent, or is considered small when present (True,
1882; Grant, 1960). However, I found that only eight of 81 adult G. berlandier: lacked a
nuchal entirely, and that when the length of the nuchal is adjusted by CL, it is shortest in

TABLE 4.—Estimates of morphological distances of North American tortoises from UPGMA clus-
tering based on means of 31 size-adjusted shell measurements. Mj, 8n, Si = Mojave, Sonoran, and
Sinaloan G. agassizii, respectively. ber = G. berlandiers; poly = G. polyphemus; flavo = G. flavomarginatus

Group
Group Mj Sn Si ber poly Sflavo
Mj 0.00
" Sn 4.78 0.00
Si 5.90 3.64 0.00
ber 7.66 9.72 9.55 0.00
poly 6.48 5.78 5.98 9.50 0.00

flave 8.81 8.97 8.95 10.09 8.51 0.00
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TABLE 5.-—Environmental and growth parameters for the four species of North American tortoises
and for the three regions of the range of Gopherus agassizii. Data from Germano (1989). Species
abbreviations are the same as in Table 2

agassizii
Parameter ber M;j Sn Si poly Sflavo
Environmental
Annual precip. (mm) 674.6 136.2 249.4 545.0 1373.3 328.4
Winter precip. (mm) 136.2 56.0 51.4 55.2 239.4 21.3
Spring precip. (mm) 216.3 14.0 14.7 35.5 369.0 59.1
Summer precip. (mm) 233.3 32.5 138.8 378.8 508.2 205.5
Autumn precip. (mm) 128.9 36.4 47.2 76.1 224.4 42.5
Jan. vs. July precip.® 32.8 10.9 34.4 121.7 100.0 58.1
C.V. annual precip. 0.297 0.561 0.339 0.245 0.178 0.389
Mean predictability 0.293 0.391 0.408 0.479 0.424 0.380
Mean constancy 0.131 0.272 0.204 0.226 0.275 0.153
Mean contingency 0.162 0.119 0.204 0.253 0.149 0.227
Mean July temp. (C) 29.3 30.2 32.2 31.1 27.4 26.2
Mean Jan. temp. (C) 11.6 7.7 9.9 16.3 13.5 9.5
Jan. vs. July temp.¢ 17.7 22.5 22.3 14.8 139 16.7
Geometric mean latitudes 26.23 34.89 32.07 27.32 29.38 26.44
Geometric mean longitude” 98.52 116.36 110.56 109.15 82.22 104.21
Growth

Upper decile CL 2029 262.5 270.5 274.0 292.1 367.6
Mean annuli width (mm) 1.54 1.82 1.57 1.41 1.68 3.01
C.V. annuli width 0.555 0.555 0.445 0.415 0.561 0.601
Weighted mean growth rate 0.191 0.108 0.107 0.101 0.112 0.114
% Asymptote at inflection 26.3 36.7 35.6 39.7 39.5 41.6
Years from 10-90% asymptote 253 28.9 29.9 27.8 25.1 23.3
Age at first reprod. (yr) 133 14.9 15.7 13.8 14.4 13.9

s Absolute difference in means
b Coefficient of variation
¢ Measured in degrees

G. flavomarginatus (Table 2). Although the revolute nature of the shell slightly decreases
the relative length of the carapace of G. berlandieri along the midline, the overall reduction
in proporiionate measure compared to the other species does not substantially affect the use
of CL as the standard for size. Another often-used standard for size is mass, but even for
live animals, CL is a better standard than mass because mass can be greatly affected by the
individual’s level of hydration, nutritional state, female reproductive state, and amount of
substrate ingested (7.e., mineral-laden soil; see Esque and Peters, 1993).

Although I did not measure carapace flare along the marginals, I did find that Gopherus
berlandieri and G. agassizii became wider towards the posterior portion of the carapace, G.
Slavomarginatus was nearly parallel, and G. polyphemus became narrower posteriorly. Auf-
fenberg (1976) qualitatively assessed degree of shell flaring and found that flaring was best
developed in G. berlandieri and G. agassizii, intermediate in G. flavomarginatus, and least
developed in G. polyphemus. Also, the anterior portion of the plastron of G. agassizii is nearly
flat compared to that of G. polyphemus, which is bent upward toward the carapace (True,
1882). Although I did not measure this character, I found that the shape of the plastron of
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G. berlandieri is similar to that in G. agassizii, and the plastron of G. flavomarginatus is
similar to that in G. polyphemus.

Besides differences in shell shape, skeletal differences exist between the agassizii (Gopherus
agassizii and G. berlandieri) and the polyphemus (G. polyphemus and G. flavomarginatus)
groups (Auffenberg, 1966, 1976; Bramble, 1982). Gopherus polyphemus and G. flavomar-
ginatus have wider skulls, larger otoliths, shorter and thicker cervical vertebrae, and a wider
manus with associated differences in carpal structure (Auffenberg, 1966, 1976; Bramble,
1982). These skeletal differences have been related to burrowing ability (Bramble, 1982).
Gopherus polyphemus and G. flavomarginatus excavate long and extensive burrows (Auffen-
berg, 1969; Morafka, 1982), whereas G. agassizii and G. berlandier: generally excavate
shallow burrows, although burrow length varies within the range of G. agassizii (Auffenberg,
1969; Woodbury and Hardy, 1948; Germano et af., 1993). The extensive skeletal modifi-
cations for burrowing in G. polyphemus and G. flavomarginatus are useful in the friable and
sandy soils in which these species occur (Bramble, 1982; Morafka, 1988), and the structurally
more primitive manus of G. agassizii and G. berlandieri seems better suited to increased
locomotion and digging in more resistant ground (Bramble, 1982).

Genetic data (Lamb et al., 1989) support the conclusion that two species-groups exist
within Gopherus, as originally determined based on skeletal differences (Auffenberg, 1976;
Bramble, 1982). Gopherus agassizii and G. berlandieri have been placed in a separate genus
by some authors (Xerobates in Bour and Dubois, 1984; Lamb et al., 1989; Scaptochelys in
Bramble, 1982). I have retained Gopherus for all four species, though, because they share
numerous derived characters not found in other living species of tortoises, and G. agassizii
and G. berlandieri are not sister taxa (Crumly, 1993). Based on the morphology of other
tortoises of the world, it would be inconsistent to recognize G. agassizii and G. berlandier:
as a separate genus (Crumly, 1993) or the separate populations of agassizii as separate
species (Fig. 4).

The matrix based on shell morphology is not concordant with matrices based on phylogeny
or precipitation and temperature variables. The shell morphology matrix does, however,
significantly correlate with a matrix based on growth data, which is not surprising given
the probable commonality of selective pressures affecting growth and sheil morphology.
Understanding the differences in morphology among closely related species can yield insight
into their ecology. Shape is important in the ability of organisms to thermoregulate (Gould,
1966). Therefore, size and shape differences in North American tortoises may affect ther-
moregulatory ability, but more data are required on the thermoregulatory properties of
shells of North American tortoises to determine if shell shape and size have been selected
to meet various environmental pressures. The question remains open as to the selective
advantage, if any, of size differences among adults for these four closely related species.
However, it is apparent that morphometrics do not simply reflect genetic relatedness.
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APPENDIX 1
Acronyms and characters measured on tortoise shells

Acronym Character Acronym Character

CL Carapace length C1 Costal 1 length

CwW1 Carapace width 1 C2 Costal 2 length

Cw?2 Carapace width 2 C3 Costal 3 length

CW3 Carapace width 3 C4 Costal 4 length

CLCL Curved-lined carapace length Mo Sixth left marginal width
CLCW Curved-lined carapace width GL Gular length

PL Plastron length GW Gular width

MPL Minimum plastron length H Humeral seam length
HS Height of shell (greatest) P Pectoral seam length

N Nuchal length A Abdominal seam length
Vi Vertebral 1 length F Femoral seam length
V2 Vertebral 2 length AN Anal seam length

V3 Vertebral 3 length AL Anal length

V4 Vertebral 4 length AW Anal width

V5 Vertebral 5 length ATL Anal tip length

SC Supracaudal length ATW Anal tip width
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APPENDIX 2
Correlations (sample sizes) of shell measurements with carapace length for North American tortoises
including pooled within-group slopes used to scale measurements across groups

Group

G. agassizii

G. ber- G. G. flavo-
Character landiert Mojave Sonoran Sinaloan polyphemus marginalus Slope

cwi 0.96 (83)  0.98(128) 0.98(58)  0.99 (36)  0.99(76)  0.99 (95)  0.75
CcW2 0.97 (91) 099 (161)  0.99(78)  0.98(42) 0.99(89) 0.99(9)  0.75
cw3 0.97 (82)  0.99(129)  0.95(54)  0.99 (36)  0.99(76)  0.99 (96)  0.77
CLCL  0.99(90) 0.9 (150)  0.99(79)  0.99 (42) 0.99(87) 0.99(95)  1.31
CLCW  0.97(90)  0.99 (152)  0.99(77)  0.99 (42)  0.99(88)  0.99 (94)  1.16

PL 0.96 (92)  0.99 (141)  0.99(72) 099 (42)  0.99 (89) 0.99(57)  1.03
MPL 0.97(92)  0.99(123)  0.99(74)  0.99(42) 0.99(89)  0.99(57)  0.93
HS 0.91(73) 094 (138)  0.97(68)  0.98(29)  0.99 (45)  0.99(52)  0.45
N 0.40 (80)  0.88(130) 0.74(57) 0.78 (40) 0.88(77) 0.89(93)  0.08
Vi 0.94 (80)  0.99 (136)  0.96(59)  0.97 (40)  0.98(76)  0.99 (94)  0.20
V2 0.93(81)  0.98(136) 0.97(58) 0.97 (42)  0.99(76) 099 (91)  0.19
V3 0.93(81)  0.96(133)  0.97(60) 097 (41)  0.98(77) 0.99(87)  0.19
V4 0.95(80)  0.97 (133)  0.94(59)  097(39) 0.98(77) 0.99(76) 0.24
%) 0.94(82)  0.97 (136)  0.94(60)  0.95(40) 0.97(78) 098 (77)  0.26
sc 0.90(82)  0.98 (130)  0.94 (59)  0.96 (43)  0.99(78) 0.97(93)  0.17
ci 0.95(83)  0.99 (135) - 0.96(63) 098 (42) 0.99(78) 0.98(91) 023
c2 0.96(83)  0.98(159)  0.97(81) 0.96(43) 0.98(78) 0.98(93)  0.21
C3 0.96 (82)  0.99 (137)  0.98(63) 0.98(.1) 099(78) 099 (92)  0.21
C4 0.95(82)  0.99 (137)  0.96 (63)  0.97 (41)  0.99(78)  0.98 (89)  0.24
M6 0.92(83) 0.98(138) 0.95(63) 0.90(42) 0.97(78) 0.94(9)  0.14
GL 0.95(90)  0.90 (149)  0.91(71)  0.94(41) 094(85)  0.98(57) 023
GW 0.80 (89)  0.94(149)  0.91(69)  0.90(41) 0.97(85) 0.96(57)  0.17
H 0.85(82)  0.98(131)  0.91(58) 0.96(42) 0.96(78) 098 (57) 0.1
P 0.55(83)  0.83(131) 0.77(58) 0.78(42) 0.85(78) 0.94(57)  0.12
A 0.89 (82)  0.98(126)  0.96(58)  0.95(42) 0.98(77) 097 (57) 029
F 0.87 (81)  0.96(124) 0.91(58) 0.92(42) 0.96(77) 0.97(57)  0.15
AN 0.70 (81)  0.95(122)  0.90(57) 0.88(40) 0.87 (78)  0.96(56)  0.10
AL 0.93(89)  0.97 (141)  0.94(71) 0096 (42) 0.97(85) 0.98(58)  0.18
AW 0.95(88)  0.97 (138)  0.95(65) 097 (42) 0.98(85) 0.98(57) 0.32

ATL 0.77(86)  0.72(110)  0.57 (49)  0.87 (40)  0.80(82)  0.91(57)  0.14
ATW  092(85) 0.93(110) 0.83(48) 0.91(42) 091(81) 093(57)  0.28






