Plant Form and Function and Reproduction Chapter 17 and 18 Organization of a Vascular Plant

- All parts have outer covering of protective tissue and inner matrix of tissue with embedded vascular tissue that conducts water, nutrients, and food.
 - Organized along vertical axis
 - Root
 - Shoot
 - > Stem
 - Leaves

Organization of a Vascular Plant

- Meristems Growth zones of unspecialized cells whose main function is to divide.
 - Primary growth initiated at tips of apical meristems.
 - Secondary growth involves activity of lateral meristems.
 Plant Body

Plant Tissue Types

- Ground Tissue contains vascular tissue.
- Dermal Tissue outer protective covering.
- Vascular Tissue conducts water and dissolved materials.

Ground Tissue

- · Parenchyma cells
 - Alive at maturity with functional cytoplasm and a nucleus.
- · Collenchyma cells
 - Living at maturity and form continuous cylinders beneath epidermis.

Ground Tissue

- · Sclerenchyma cells
 - Tough, thick cell walls, and do not contain living cytoplasm when mature.

Dermal Tissue

- Often covered with waxy cuticle.
- Guard Cells Paired cells with openings (stomata) beneath.
- Root Hairs Tubular extensions of single epidermal cells that keep root in intimate contact with soil particles.

Vascular Tissue

- · Xylem Principle water-conducting tissue.
 - Tracheids
 - Vessel Members

Vascular Tissue

- Phloem Principle nutrient-conducting tissue.
 - Sieve Cells
 - Sieve-Tube Members
 - Sieve Tubes
 - Companion Cells

Leaves

- · Mesophyll:
 - * Palisade
 - Spongy

Stems

- · Primary Growth
 - Primary growth of shoot, leaves cluster around apical meristem unfolding and growing as stem elongates.
 - Bud develops in axil of each leaf.
 - Hormone moving downward from the terminal bud continuously suppresses lateral bud expansion.

Stems: vascular tissue

Stems

- · Primary Growth
 - Strands of vascular tissue are arranged around outside of stem, common in dicots, or scattered throughout, common in monocots.
 - Pith
 - Cortex

Stems

- · Secondary Growth
 - Initiated by differentiation of vascular cambium.
 - Thin cylinder of actively dividing cells located between bark and main woody stems in plants.
 - Cork Cambium develops in stem's outer layers.
 - Cork cells

Vascular Cambium Root Structure Essential Plant Nutrients

- Nitrogen Proteins and nucleic acids.
- · Potassium Regulate turgor pressure.
- Calcium Component of middle lamellae.
- Magnesium Part of chlorophyll molecule.
- Phosphorus Nucleic Acids and ATP.
- Sulfur Key component of Cysteine.

Seedless Vascular Plants

- Most abundant of the four phyla of seedless vascular plants contain ferns with about 12,000 living species.
 - * Have both gametophyte and sporophyte individuals, each independent and self-sufficient.
 - Gametophyte produces eggs and sperm.
 - Sporophyte bears and releases hapolid spores.

Seed Plants

- Seed Embryo cover that offers protection of embryonic plant at its most vulnerable stage.
 - Male and Female gametophytes
 - Male microgametophytes (pollen grains) arise from microspores.
 - Female megametophytes contain eggs and develop from megaspores produced within ovule.
 - > Pollination transfer of pollen.

Seed Plants

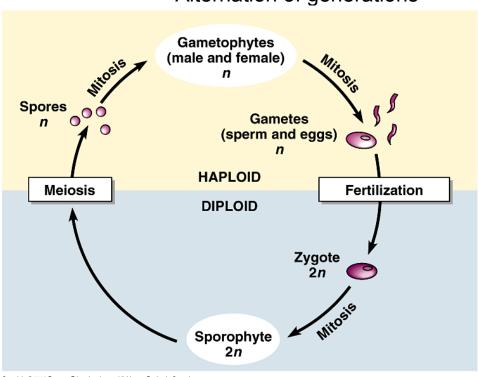
- Five living phyla of seed plants:
 - Four are gymnosperms ovules not completely enclosed by sporophyte tissue at time of pollination.
 - Fifth is angiosperms ovules completely enclosed by vessel of sporophyte tissue (carpel) at time of pollination.

Seed Structure Seed Plants

- · Adaptive value of seeds:
 - Dispersal
 - Facilitate migration and dispersal
 - Dormancy
 - Wait for favorable conditions
 - « Germination
 - Synchronization with environment
 - Nourishment
 - Energy source for young plants
 Gymnosperm Phyla
- Coniferophyta (Conifers)
 - * Trees that produce seeds in cones.
 - Most familiar of four gymnosperm phyla.
 - Seeds develop on scales within cones and are exposed at time of pollination.
- · Cycadophyta (Cycads)
- Ginkgophyta (Ginkos)
- Gnetophyta (Gneetophytes)

Rise of Angiosperms

- · Comprise 90% of all living plants.
 - Use roots to anchor plants in one place to obtain nutrients.
 - Produce tiny male gametes that are easily transported.
- Flower reproductive organs that employ bright colors to attract pollinators and nectar to induce entrance into the flower to contact pollen grains.


Angiosperm Flower Why Different Kinds of Flowers

- · Different pollinators are attracted to specific types of flowers.
 - * Bees most numerous insect pollinators.
 - Becomes coated with pollen while inside the flower.
 - * Butterflies
 - Moths
 - * Hummingbirds

Seed Dispersal - Fruits

- Fruit mature, ripened ovary containing fertilized seeds, surrounded by a carpel.
 - * Fleshy fruits encourage predation.
 - Berries Many seeded forms on inner carpel wall. (Grapes, Tomatoes)
 - Drupes Stony inner layer adhering to single seed. (Peaches, Olives)
 - Pomes Fleshy portion comes from petals and sepals.
 (Apples, Pears)

Generalized Plant Life Cycle Alternation of generations

Copyright © 2003 Pearson Education, Inc., publishing as Benjamin Cummings.