Living In Ecosystems-Population Dynamics

Chapter 30

Population Growth

- Populations are composed of groups of individuals of the same species living together.
 - Critical Properties that affect the dynamics populations
 - o Population Size
 - o Population Density
 - Population Dispersion
 - o Capacity for Growth

Population Growth

- A population's actual rate of increase is the difference between birth rate and death rate corrected for migration.
- Innate capacity for growth of any population is exponential.
 - Even when rate of increase remains constant, the actual increase in the number of individuals accelerates rapidly as the size of the population grows.

Population Growth

- o Exponential Growth Model
 - Assumes population growing without limits at its maximal rate.
 (r = biotic potential)

 $dN/dt=r_iN$

- $\circ N$ = Number of individuals in population
- $\circ dN/dt$ = Rate of change in population size over time
- $\circ r_i$ = Intrinsic rate of increase

Population Growth

- Carrying Capacity (K)
 - Number of individuals an area can indefinitely support.
- o Logistic Growth Model
 - As population approaches its carrying capacity, its growth rate slows as resources become scarce.

dN/dt = rN (K-N/K)

o Sigmoid Growth Curve

Two Models of Population Growth Influence of Population Density

o Density-Dependent Effects

- Effects are independent of population size and act to regulate growth (weather).
- Density-Dependent Effects
 - Effects are dependent on size of population and act to regulate growth (resource competition).
 - o Have increasing effect as population size increases.

Population Demography

- o Sex Ratio
 - Proportion of males and females in a population.
 - o Usually directly related to number of females in the population.

The Niche and Competition

- Niche Biological role in community.
 - Fundamental Theoretical role
 - Realized Actual role
- Competition Two or more organisms attempt to use same resource.
 - Interference Fighting
 - Exploitative Consuming shared resources
 - Interspecific Different species
 - Intraspecific Same species

Barnacle Competition

Competitive Exclusion

- Gause No two species can coexist in the same niche indefinitely.
 - When two species coexist on long-term basis, their niches differ in one or more features.
 - Otherwise, one is eventually driven to extinction.

Resource Partitioning

 Sympatric Species - Occupy same geographical area but avoid competition by utilizing different portions of the habitat.

Resource Partitioning

 Allopatric Species - Do not occupy same geographical area, thus are not usually in competition.

Symbiosis

- Symbiotic Relationship Two or more species of organisms live together, and at least one gains benefit.
 - Commensalism One species benefits while other neither benefits or is harmed.
 - Mutualism Both species benefit.
 - Parasitism One species benefits while the other is harmed.

Plant Defenses

- Predator-Prey Interactions
 - Morphological Defenses
 - o Thorns, spines, plant hairs
 - Chemical Defenses
 - o Secondary chemical compounds
- Evolution of herbivores avoiding plant defense allows access to a new resource without competition from other herbivores.

Animal Defenses

- Feeding on plants rich in secondary compounds may have added benefit.
 - Blue Jays and Monarch Butterflies
- Defensive Coloration
 - Aposomatic Coloration Advertise poisonous nature with bright coloration.
 - Cryptic Coloration Camouflage
- Chemical Defenses

Predator-Prey Cycles

- o Predation is consumption of one organism by another.
 - Under simple laboratory conditions, predators often exterminate their prey, and then become extinct themselves when they run out of food.
 - o If refuges are provided for the prey, a few individuals usually exist, and then repopulate after the predators die out.

Predator-Prey Cycles

- o Snowshoe Hares (Lepus americanus).
 - Food Willows
 - Predators Canada Lynx (Lynx canadensis)

Predator- Prey cycle

Biodiversity

 Measure of number of different types of species in an area.

- Crucial to ecosystem preservation.
- o Biodiversity Promotion
 - Ecosystem Size
 - o Larger ecosystems, usually have higher levels of biodiversity
 - Latitude
 - oLength of growing season
 - Climatic stability

Latitudinal Cline in Species Richness