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Excitos in high magnetic fields in disordered two-dimensional systems:
Weak-localization effects for composite neutral particles

P. I. Arseyev
Lebedev Physical Institute, Russian Academy of Sciences, Moscow 117924, Russia

A. B. Dzyubenko*
Walter Schottky Institute, Am Coulombwall, Garching D-85748, Germany
~ (Received 7 April 1995)

Quantum corrections to transport of two-dimensional (2D) excitons are considered in high magnetic fields.
We find that despite total charge neutrality of these composite particles, there is no weak localization and the
diffusion constant remains finite even without inelastic phase-breaking processes. This is due to time-reversal
symmetry breaking by the magnetic field B. (The only exception is the case when the electron and hole
components are exact #— —¢ counterparts; then 2D excitons are always localized in B.) Nevertheless, weak
localization corrections change significantly the dependence of the diffusion constant D(B), leading in high
fields to much faster decrease of D with B in comparison with classical transport.

It is now well established that in disordered two-
dimensional (2D) systems all states are localized no matter
how weak a random potential is.'~> This phenomenon is uni-
versal for various wave propagation processes. Because the
origin of the effect is in the constructive interference of the
time-reversed scattering paths, it cannot be’ explained for
massive particles within the framework of the classical
theory. The statistics of particles does not play a crucial role
in this phenomenon (see, e.g., weak localization of phonons*
and excitons).

Localization of states means that the diffusion constant as
a function of frequency D(w)—0 when w—0. If one takes
into account various inelastic processes such as, e.g.,
electron-electron interactions or interactions with phonorns,3
then D(w) remains finite. Its static value is determined by
the incoherent phase-breaking time 74. A magnetic field
leads to some new physics in weak localization: it breaks
time-reversal symmetry, thus leading to a negative magne-
toresistance in electron systems.%” Physically, the origin of
the effect is that a charged particle acquires different phases
in the magnetic field moving upward and backward along a
closed loop.® Thus the magnetic field B breaks the construc-
tive interference, and, hence, suppresses weak localization
effects. ‘ .

For excitons, i.e., bound electron-hole (e-k) pairs that are
totally charge neutral, the effect.of B on weak localization is
not obvious, and, to the best of cur knowledge, has niot been
studied so far. The most. general question here is whether
time-reversal symmetry always breaks for excitors in the
magnetic field. One could expect that the exciton due to its
composite structure should acquire some phase in B moving
along a closed loop (though the effect can be suppressed in
comparison with electrons), i.e., t— —t symmetry breaks.
However, it is not always the case: when e and & compo-
nents are exact t— —¢ counterparts, there is no symmetry
breaking in B for excitons, and, hence, 2D excitons should
be localized. In the simplest case of spin one-half electrons
and holes, t— —¢ symmetry is conserved for excitons in B
when the masses of the two components are equal
(m,=m;) and the scattering potentials are the same
(Ve = Vh) .
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In a general case it should be established by concrete
analysis how B suppresses weak localization for charge-
neutral excitons and in which way the internal structure of
these composite particles shows up. We perform such a study
in the magnetic quantum limit—for strictly 2D magnetoex-
citons (MX’s), i.e., excitons in high magnetic fields such that
/p=(hcleB)*<a 2,  subjected to a weak random poten-
tial; ap= eh?/(m,+m;)e? is the effective exciton Bohr ra-
dius. It turns out that the magnetic field B suppresses the
divergence of maximally crossed diagrams in the exciton-
antiexciton channel (an analog of the cooperon?). As a result,
the diffusion constant of 2D MX’s in the presence of weak
disorder remains finite in the limit w—0. We show that the
static ‘exciton diffusion constant D =D(B) turns out to be a
decreasing function of B in the limit /p<<ap.

Necessarily, the effective scattering potential for excitons
has always a finite correlation length due to their composite
structure, even if the potentials acting on the electron and
hole are &-correlated.’ The long-range character of the ran-
dom potential together with time-reversal symmetry break-
ing in B leads to a new feature. We find in this case that the
transport coefficient ¥,=#/7, coming from the class of
maximally crossed diagrams differs from the usual transport
coefficient y,=#/7, (coming from the class of ladder dia-
grams, the diffuson); here 7, is the transport relaxation time.
It means that in a general case two different diffusion
constants—in the cooperon and in the diffuson—appear in
the theory of weak localization. This fact, as far as we know,

~ has not been established so far.

First we find the effective potential, which acts on the MX
as a whole. In this paper we adopt the “exciton” approxima-
tion in which excitonic states serve as a basis (see, e.g., Ref.
13). Let us suppose that the electron and the hole are sub-
jected to the random potentials V (r) and V,(r), respec-
tively. These can be, e.g., the impurity potentials or the ef-
fective potentials describing the interface roughness (IFR) in
a quantum well (QW); the situation can be changed from
completely statistically correlated V (r) and Vj(r) to statis-
tically independent ones—as, e.g., for spatially separated e
and . Using the wave functions of the MX in the zero
Landau level," we obtain the scattering matrix element be-
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tween the states with momenta p and p’ in an external po-
tential V=V, (x,)+ V,(r}),

1. i Ap*/2
Vp',p=§Ve(Ap)exp(g[p’Xp]z/é- i

1. i Ap?/2
t3 Vh(Ap)eXP(~5[p'><p]z o=~

o

Here V,(p) are 2D Fourier transforms of the potentials
V. (r) (e=e,h), Ap=p’'—p is the transferred momentum,
and S is the area of the system. Transitions to higher Landau
levels in strong magnetic fields are weak™ ™ as
(0,7)"2~B~1<1 and irrelevant.

For a Gaussian disorder we use the standard diagram
technique,” which involves in our case the disorder-
averaged two-particle @MX  propagators G7“)(p)
=[w—e(p)*iyy(p)]~! (see, e.g., Ref. 13). The damping
constant for the MX with momentum p is determined by the
imaginary part of the self-energy [Fig. 1(a)l:

dp’ W(p.p',0)
2m)* e—e(p')+ivy(p')’

yo(p)==1m [ ¢ @

1
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FIG. 1. (a) The lowest-order self-energy part of the MX propa-
gator. The dashed line represents the correlation function
W(p,p’,0). (b) The sum of all maximally crossed diagrams,
U.,.(p,p’,q). The upper (lower) solid lines are disorder-averaged
retarded (advanced) MX propagators G™(%).,

where (for a parabolic part of the spectrum p/p<1)
e(p)=p%2M and M=2#%*E\/%~B"” is the effective
mass, and Eq=(m/2)'? e?/e/3~B'? is the binding energy
of the 2D MX.!! W(p,p, ,q) is the correlation function of the
scattering potential:

W(P:P1,9)=(Vpp,Vp,~qp-a) =Bee(AD)exp{(i/2)[aX Ap], £3}+Bys(Ap)exp{—(i/2)[qX Ap], 73}
+B,,(Ap)exp{ilp; X p], #2—(i/2)[qX Ap], #3}
+B, (Ap)exp{—i[ps X pl, £5+(i/2)[qX Ap], 73} . (3)

Here Ap=p-—p,, the correlators are defined as

B op(p) =exp(—p*/3/2) (Vo(D)Vp(—P)), and () means
the ensemble averaging. As usual, when yy<€e we have

dép,
"@)=m6) [ 2 W, @

where |p,| lies on the mass shell £(p;)=¢ and in Eq. (2)
only angle average remains; .#(¢)~B'? is the density of
states of the 2D MX. Weak localization theory works well
for a weak disorder when yy(p)<e(p). Formally, this con-
dition allows ome to calculate all integrals involving the
Green’s functions in the pole approximation. Physically, it
describes the situation in which the interaction with a single
scattering center cannot localize the particle and the localiza-
tion is possible only at large distances due to the interference
effect. For any concrete system this condition must be estab-
lished separately. For MX’s it is violated in the region of
small p; i.e., long-wavelength MX’s are strongly localized.*
Nevertheless, when p>p..;,, the condition y(p)<€e(p) is
satisfied, and the present theory is valid. For, e.g., the scat-
tering of the MX due to the IFR in a QW of the width d,
Pmin’5~AAag/d®, where A is the mean height and A is the
correlation length of the IFR.}1

In the weak disorder limit the main contribution to the
diffusion constant corrections comes from the class of maxi-
mally crossed diagrams in the particle-antiparticle channel.?

For the present case of 2D MX’s they are shown in Fig. 1(b).
The crucial role of such diagrams is explained by the fact
that when p+p’—q=0, this condition holds for any total
momentuimn in G'G* lines because of the momentum conser-
vation. This means that through the diagram the poles of any
pair G and G* are close together (in resonance), thus lead-
ing to a maximal contribution for diagrams of the same or-
der. It is convenient to write down the equation for the sum
of such diagrams, U, in the variables p, p’ and the total
momentum K=p+p’—q (q is the density fluctuation mo-
mentum). For the diagrams shown in Fig. 1(b), K is con-
served through any interaction line. Then for U in the usual
way we obtain the Bethe-Salpeter equation

[ a,w(P’p ’];) L s,m(pﬂp ’I{)
( 7T) € !

XGg—m(K—pl)Ue,w(pl5p’,K)a (5)

where
0 7 dpl s r
U, .(p,;p", K)= @n? W(p,p:,K)GL(p1)
XGi_ (K=p)W(p:,p".K), (6)
and
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W(p,p;, K VK-pK—p.)- 7 ’ i ¥ ¥
(p P1 ) < p,p; ' K-p,K p1> ( ) U(K,w)=U0+[(1+§;:—) _;9__ 225’”2 } U(K,w)
The difference of the present case from the usual theory is in ; or e
the difference between the correlation functions W in Eq. (7) - K (%/27)Ui(K, ), (13)

and W in Eq. (3). In W, in comparison with W, the phase
factors are exchanged BB, and By, B,. For ex-
ample, into W(p,p;,K) the term

B..(Ap)exp{i[p; X pl, £/3+ (i/2)[KXAp], 73} (8)

enters, while into Eq. (3) the same phase factor comes with
B, . This difference is connected with time-reversal symrae-

try breaking for the effective potential: Vpp, #V_p —p-

Otherwise, we would come to the usual theory of weak lo-

calization.

In the weak disorder limit G'G*~ 8(s(p)—¢), so only
angle integrations remain in Eq. (5). Usually, the isotropic
part of U, .,(p,p’,K) diverges when K, w—0. This happens

because the relation

[ o2 Wap G EIGH-P=1 O
holds. Then from Egs. (5) and (9) (if W="W) it follows that
fd(;bpquﬁpl ,0(P»P1,0)—. In our case, however, the

isotropic part of U remains finite in the limit K,w—0. In-
deed, using the identity W=w+ (W W), we obtain

[ s e, O BIGE B =1= 22, (10

where ¥3(p)= vo(P) ~ ¥0(P)=0,

dop; -
2ar W(papl ’0)

o) =mH1e) | )

Still, when yz<€7,, the isotropic part of U is the leading
one. The solution of Eq. (5) can be found for small w and K
as an expansion in angular momentum (a similar procedure
was used in Ref. 17). We expand the product G'G* up to the
second order in K:

o _Im G(p) w—(p-K)/M
GeGe-olKmP)= =0 [" 2i7(p)
_(K? 1 } ,
M 2T 12

[For the nonparabolic part of the spectrum, p/M should be
replaced by the exciton center-of-mass velocity V(p)
=Jde,/dp. ] Higher angular terms are connected with the iso-
tropic part by the term (p-K), which means that every next
angular term is in the following order in K and can be ne-
glected. Also, we can set K=0 in W(p, p1,K) because in the
K expansion the terms coming from W would give an addi-
tional small factor [y(p)/e(p)](p<5)>. Substituting Eq.
(12) into (5) and integrating on the mass shell
e(p)=g(p’)=¢ over the angular variables ¢,, ¢,1, we
obfain the first equation

where we omit for brevity the dependence on g, and

¢p1 ;}"2

U0=% s W(p,py,0)= Py ST (14)
de, [ d
U(Kaw)= J’ _E% 2¢;;1 Ue,m(p’pl’K)i (15)
d¢, (Ao, p-K
Uy(K,0)=i f L f f;‘EM—Ue,w(p,pl,K), (16)

K=K/|K|. Multiplying both sides of Eq. (13) by
i(p-K)/M and integrating again over the directions of p and
p1, we obtain the second relation

2 ~ . -
p Y1 lw Y1
M —-5270U(K,w)+<1+270) ” Ul(K_,a)).
(17)

Here a value y; appears that leads from v, to the transport
coefficient ¥, [see Eq. (19) below]:

Uy(K,0)=K

' d
:)'/1= J- ¢Pf ¢P1 p K W(P:Pl,o) pl K’ (18)

where p=p/|p|. Solving the system of Eqgs. (13) and (17),
we finally get the cooperon vertex

2% o/ mH (&)
DcKz—iw"'z'yB'}’()/;).’O ’

UK, w)= 19
where D¢=p?/4M?¥y,, ¥+=7vo— ¥1=0. A notable feature
presented by this equation is that for a neutral composite
particle in B a finite value yp appears which cuts off the
singularity of the cooperon (cf. Refs. 6 and 7). The value of
g can be estimated from Egs. (10) and (11):

v8(P)=1(pZB)* 70(P)> (20)

where 7=1—((V; V) +(VViD/(IVel*) +(|Vy |2>) At
a fixed momentum p, for IFR (Ref. 14) yo(p)~B*2, and we
have yz~B~ %2 in the case of unscreened charged impuri-
ties yo(p)~B~>? and yz~B~ "2 In general, with increas-

_ing B the internal structure of the MX is revealed less, and

the MX more closely resembles an ordinary neutral particle.
Qualitatively, we can connect the appearance of yp with the
composite structure of the MX by the following geometric
interpretation (cf. Ref. 8). For the MX the magnetic momen-
tum p determines the mean separation between the electron
and hole r,,=pX2z /2 1011 Thep, smce near the scatterer
the electron and hole move differently,'® there appears a ran-
dom phase shift ««re,,//Z It is equal to the ratio of the
magnetic flux that the exciton acquires, A~ ~r2.B, to the
flux quantum ®. The value A®/®, determines the random
phase fluctuation for the exciton in a single act of scattering,
i.e., during the relaxation time 7. The destruction of interfer-

ence occurs during the time 75 when the phase fluctuations
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~1. Since changes of the phase are random, this is achieved
over ~(®o/A®)? steps, and, hence, requires the time
75==(Dy/A®)27~7/(p£5)*, which is consistent with Eq.
(20). Note that the effect of phase destruction turns out to be
proportional to the fourth power of the exciton size r,;, i.e.,
strongly suppressed with increasing B.

The second feature of Eq. (19) is that y,= y,— ¥, differs
from the usual transport coefficient y,.. Indeed, the two con-
tributions to ¥, are determined by the isotropic part of the
vertex W and the angle-dependent part of W, correspond-
ingly. In 7, both parts are determined by W. Therefore, in
this case D€ in Eq. (19) does not coincide with the “classi-
cal” diffusion constant D. This finding that several relax-
ation times appear in the theory can be addressed to any
disordered system in which, simultaneously, time-reversal
symmetry is broken and a random potential has a finite cor-
relation length.

To obtain quantum corrections to the diffusion constant,
the representation (19) for U(K, w) together with the first-
order vertex W(p,p’,K) should be inserted into the usual
ladder diagrams for the effective conductivity.? The solution
of the ladder equations (the details will be presented
elsewhere!%) leads to the appearance of the transport coeffi-
cient 7, instead of v, for a finite-range correlated potential.'®
Finally, the diffusion constant of the MX with energy & is

- cp2 - :
Tl cln(D K"’“H , @)
4ty N D 2v8%0
where the cutoff momentum Ky=y(p)/V(p) is determined
by the applied approximation [see Eq. (12)] and
Dy=p*/4M?y, is the usual “classical” diffusion constant of
the MX.1#16 At a fixed energy & we have Ko~BY*, and for
IFR Dy,, D°~B7!. In the main order in B

D(e)=Dy(e)j1
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Yo/Y0= Yo/ v«=0(1). Thus, when B increases, the fast de-
cay of <yg outweighs other factors under the logarithm in Eq.
(21), and the negative correction term behaves as
~—B'YnB. For any finite energy & at sufficiently high B
the correction term becomes of the order of unity. In such a
situation D can be obtained, e.g., by a self-consistent ap-
proach similar to Ref. 20, which gives D(&)~B~2. This
behavior shows that quantum corrections are important at
high magnetic fields and lead to a faster power-law decrease
of D as compared to the classical diffusion constant
Dy~B~1. Note also that Eq. (20) shows that the phase-
breaking effects turn out to be suppressed with increasing B,
namely, yg/ ')'0"'/43 . Thus, in the limit B—c MX’s can be
considered as neutral, almost structureless quasiparticles, and
for neutral e-k systems the usual effects of 2D weak local-
ization should be recovered.

Interestingly, since at B=0 the static diffusion constant
D=0 (2D excitons,” as well as ordinary 2D particles are
localized in a random potential), and at high fields, as it was
shown, D is finite and decreasing, we conclude that D should
be a nonmonotonous function of B, being an increasing
function of B at low (and possibly intermediate) fields. The
latter effect for excitons can be thought of as an analog of
negative magnetoresistance in electron systems. This predic-
tion of theory can be experimentally tested at low tempera-
tures (when the phase-breaking time 7, is large) in QW’s
with weak or moderate disorder (e.g., wide QW’s with
smooth interfaces) in magnetic fields £z=ay.
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