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We discuss symmetry-driven squeezing and coherent states of few-particle systems in
magnetic fields. An operator approach using canonical transformations and the SU(1, 1)
algebras is developed for considering Coulomb correlations in the lowest Landau levels.
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Coulomb interactions in strong magnetic fields are relevant in various physical con-
texts such as, for example, the behavior of ions in atmospheres of neutron stars,
electrons and holes in semiconductors, and charged quasiparticles in the Fractional
Quantum Hall Effect regime. One of the general aspects of the problem is consid-
eration of the relevant symmetries. In this work, we discuss an operator method
that allows one to maintain both axial and magnetic translations geometric sym-
metries in two-dimensional (2D) systems in Landau Levels (LL). We also establish
a connection with the dynamical SU(1,1) symmetry.

1. Charged e-h Systems

Let us consider a 2D system of two oppositely charged particles —¢; < 0 and ¢ > 0,
which we will denote as an “electron” and a “hole”, respectively. The total charge
is negative, —Q) = g2 — ¢1 < 0. Motivations for studying this problem in magnetic
fields are mostly symmetry-related. Physically, such a system may describe, e.g., a
strongly bound ion interacting with an additional charge; the former being treated as
a point-like charge with no internal degrees of freedom.® The operator of magnetic
translations (MT) is of the form K = —ihV; + —ihVs — B x {(g1r1 — gor2)/2c,
where the symmetric gauge is used.»? The MT group is non-commutative, and the
dimensionless MT operator k = KLg /h has canonically conjugate components,

2For a multiparticle e-h system, charges —q1, g2 and coordinates ri, rz correspond to the total
charges and center-of-charge coordinates of the e- and h- subsystems.'
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s, IAcy] =14, where Lp = /fic/QB is the effective magnetic length. This allows one
to introduce a pair of Bose ladder operators for the whole system, B;f = —ik_ / V2
and B, = ik, //2 such that [B., B}] = 1, here kx = k, + ’Ll%y In terms of intra-LL
operators of individual particles, we have!

BT:—Z]CT_—UBT—UB;“ u—\/> v:\/%. (1)

The second linearly independent annihilation operator is By, = uBp, — UBQ: so that
we have two pairs of Bose ladder operators: [Bp, B}TL] = [Be,Bl] =1, [By, Bi] = 0,
and [By, B.] = 0. This is in fact a Bogoliubov canonical transformation

B} SBigt ~ ( BI A cosh® —sinh ©
Ce ) = (272 VU e), U= ) (2)
By, 5B, St By, —sinh® cosh®

performed by the unitary operator S = exp(@ﬁ) with the generator £ = B;Bl —

B.By; here O is the transformation parameter with 4 = cosh ©, v = sinh ©. This
transformation introduces new quasiparticles with coordinates

R, — q1r1 — gara . Ry — v a192 (ta 1), 3)
Q Q
in which the transformed operators assume the standard forms!
- 1 VA 0 - 1 Zy 0
Bl = — (2 —2Lp— Bl = — (22 —2Lp—— 4
‘ ﬁ(zLB Bazl)’ " ﬁ(ﬂB 3825‘)’ W

where the 2D complex variables Z; = X; + iY; are used. Note that the interaction
potential Uiy = U(r; — rg) does not depend on R;. The MT operator is diagonal
in the new representation, k? = QBgée + 1. It has the discrete spectrum 2k + 1,
where the oscillator quantum numbers k£ = 0,1,2,... determine the position of a
guiding center of a charged system in B."2 A complete basis of states in zero LL
compatible with both axial and translational symmetries is given by

BB o
W\@ = |km), ()
where [0) = S|0) is the transformed vacuum and state |k;7/1> has total angular

momentum projection M, = m—k. The energy spectrum is degenerate with respect
to k. Therefore, it is sufficient to consider only the states with & = 0 from (5); we
denote such states as |). The above procedure removes one degree of freedom and
corresponds to a possible partial separation of variables in magnetic fields.

For, e.g., the Coulomb interaction Ui,y = —g1g2/|r1 — r2|, the eigenergies in the
lowest LL can be calculated analytically as expectation values:

Uy, = (| Uint i) = —Ey (%)Mﬂ ZC’“ ]ﬁk, ( ” q2>k : (6)

q1
lln

shown in Fig. 1 for several values of parameter € = (¢2/ ql)l/ 2 < 1. The spectra are

where Ey = Ig; = (he/q;B)'/? are magnetic lengths. Eigenenergies (6) are
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Fig. 1. Eigenergies (6) of two interacting charges —g1 < 0 and g2 > 0 in zero LL for several
values of parameter e = (g2/¢1)%/2.

completely discrete. However, in the limit g2 — ¢1 (¢ — 179) the spectra become
quasicontinuous and fill in the 2D neutral magnetoexciton band of width Ey.3

In the terminology of quantum optics, the transformed vacuum |0) = S|0) is a
two-mode squeezed state.* For particles in a magnetic field squeezing has a direct
geometrical meaning.’ Indeed, in the coordinate representation we have

V1 — €2 Xp< r? r3 N ezfzz>

A%, 4%, 2pilps

6 =
(r1,72(0) 2wipiiB2

(7)

Using Eq. (7), the probability distribution can be presented in the following form

2 2
pr P rg T
em<%-7) pr— L X2 (8)

<2
|(r1,r2|0>‘ - lg1 ™ g2’

g40_

where 0% = 4/(1 ¥ ¢). This shows that in the new vacuum state |0) the distribution
probability for the difference coordinate p_ is squeezed at the expense of the sum
coordinate py, see Fig. 2. Note that in the limit g2 — ¢ (¢ — 179) the relative
coordinate distribution becomes maximally squeezed while the center-of-charge co-
ordinate becomes extended, o, — oo. This is because the components of p; and ps
do not commute in the lowest LL approximation, see Sec. 2 below.

2. Neutral e-h Systems

For a neutral system ¢g» = —g1 = ¢ the MT operator is given by K = —ihV, +
—ihVy — ¢B x (r; —r3)/2c. Its components commute [K, K’y] = 0 so that the MT
group is abelian. Therefore, the states of a neutral magnetoexciton (MX) can be
labeled by the magnetic momentum K = (K, Ky).3>5 The ground state in zero LL
is a K = 0 state, which can be presented as a squeezed two-mode vacuum

K=0)=5/0) , S=exp <B§B;g) . (9)
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Fig. 2. Probability distribution (8) for the z-components of coordinates py and p_ (at y4 =
y— = 0) for several different values of the charge ratio ga2/q1-

The coordinate representation is given by?®

r? 4+ r3— 221‘22)

(10)
41,

(rirg|K =0) = exp (—
This is a coherent state of an infinite number of electron and hole states in zero
LL.5 A state with a finite momentum K = (K, K,)) is given by

K) = |Kq, Ky) = S(K)|0), (11)
wf ) et)]

and is a two-mode squeezed displaced vacuum state.? Expectation value of the rela-
tive coordinate r = r; —r in state (11) is given by (K|r|K) = B x K#711%.3 Also,
the zero-momentum state (10) can be considered to be a limiting case of a charged
system state (7). Indeed, when g2 — ¢1 = 0, wavefunction (7) becomes extended
(its norm tends to zero) and its coordinate dependence becomes identical to (10).

S(K)

Using Eq. (8) we deduce that the relative coordinate r = r; —r; becomes maximally
squeezed (to the magnetic length {5 = (fic/gB)'/? in the lowest LL) at the expense
of the center-of-charge coordinate R = (r; + r1)/2. The latter becomes extended.
To elucidate this, let us consider projections of the center-of-charge R and relative
T coordinates onto zero LL. In complex combinations of the components these are
X +4Y = (B, + B;&)/ﬁ and T + iy = v2(Be — B;&) = K, respectively; here
K, =K, + zf(y We see that (i) the projected relative and center-of-charge coor-
dinates become canonically conjugate, [Z,Y] = —[7, X| = 4, and (ii) the projected

bNote that for, e.g., the electron operator, De(oz)B;r DZ(Q) = Bl + a, where a well known displace-

ment operator®® is given by De(a) = exp(aBi — a* Be).
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relative coordinate, up to a scaling factor and rotation by ninety degrees, coincides
with the MT operator K.
Let us discuss the relevant two-mode realization of the SU(1, 1) generators

1
Ko = 3 (BgBe + BB, + 1) , K_=B.B,, K,=BBl, (13)

which satisfy the SU(1, 1) commutation relations [[Cg, K] = +K4 and [K_,K4] =
2K.% The dimensionless MT operator for a neutral magnetoexciton, k? = K2l% /h2,
becomes in this representation k2 = 2(2Kg — K+ — K_), while the angular momen-
tum projection L, = B;Bh — B;f B, is connected with the Casimir operator of the
SU(1,1) group® as C = (L2 — 1)/4. This allows one to identify states (9) and (11)
as generalized coherent states of the SU(1,1) group.® Also, it becomes possible to
find a representation of the MX states in the set of K2 and M, quantum numbers,
the eigenvalues of the mutually commuting integrals of the motion K2 and L,. The
corresponding state for, e.g., M, = —M <0, is given by

K2, 0M,) = eBLBL K M), (14)

ik \M e \™
L= (E) (%)
M) - _ |
VIn(k?) 2 (m+ M)im!
is the Barut-Girardello coherent state,” Ij/(x) being a modified Bessel function and
ky = (K, £+ iK,)lg/h. Proof follows from Egs. (13) and the algebra K_e %X+ =
e K+ (]CJr +K_ — QIC())
In conclusion, we introduced an operator formalism for partial separation of de-

where

m+ M,m). (15)

grees of freedom for electron-hole complexes in magnetic fields. We also established
its connection with the SU(1,1) algebras. Application of the powerful formalism
of the SU(1,1) group allows one to construct a number of coherent ans squeezed
states that may be useful for considering Coulomb correlations and optics of few-
and many-particle systems in Landau levels.
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