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The ground state of electron—hole (e—h) quasizero-
dimensional systems, . 1.8, two-dimensional (2D)
in strong magnetic fields, is of considerable interest, It
is shown in Ref, 1 that the ground state of such systems
is an ideal (if transitions to the higher Landau levels are
ignored) gas of noninteracting excitons,

However, this cannot be demonstrated by the usual
diagrammatic methods at T = 0, The difficulty is the in-
finite (in the thermodynamic limit) Landau degeneracy.
The proof given in Ref, 1 utilizes the temperature dia-
grammatic technique which allows for spontaneous sym-
metry breaking in a system and makes it possible to go
to the limit T — 0.

We shall consider an e—h system directly at T = 0.
We shall use the Bogolyubov transformation method to ob-
tain the exact wave function of the ground state which is
in the form of a wave function of a Bose condensate of an
ideal gas of excitons, To the best of our knowledge this
is the first example of an exactly solvable two-dimen-
-sional problem for particles with the Coulomb interaction
(see also Ref, 1). ‘

We shall consider a nonequilibrium semiconductor

in a magnetic field, The constant number of electrons N
in the conduction band is equal to the number of holes in
the valence band, The applied magnetic field is assumed
to be strong: ryg <« ap, where rZ = c/eH is the magnetic
length, ag = 1/me? is the effective Bohr radius, andfi =1
(see Ref, 1), If p= N/N, = 1, then only the electron and
hole Landau levels with n = 0 are occupied and we can ig-
nore transitions to the remaining levels if ry«< ap (Ny=
S f2n r%i is the degree of degeneracy of the Landau levels
and S is the area of the system).

We shall adopt the Landau representation for the
Hamiltonian of the system # = #,,, —p/N [with the A =
(0, Hx, 0) gauge; we shall also introduce identical chem-
ical potentials e and h measured — in the nonequilibrium
case — from the corresponding Landau levels; the inter-
action Hamiltonian &, is given by Eq. (3); N = Ne + N
is the operator representing the total number of particles|.
We shall transform / with the aid of a unitary operator

U=exp (¢(Q5 — Qu)}, @)
where Q7 =2Xb;a;, is, as can be shown, the operator of

creation of a quasizero-dimensional exciton with a mo-
mentum P = 0; a+y and b;y are the creation operators of
electrons (e) and%oles (h) with the quantum number py at
the level n = 0. The transformed Hamiltonian & =UXU*
has the form & =W - #o+ # ., Where W(¢) =— (2% —
'Eo) VN, is a numerical function, . is the one-particle

part of the Hamiltonian
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A, is the interaction Hamiltonian

i
Z=Fn=75 2 V (12| 1'2") [6fatas.ay, + (6 > b) — 2bfagas.by],  (3)

u=cos¢, v=_s8ing, and E, is the binding energy of a
quasizero-dimensional exciton, The above results apply
to a fairly wide range of interactions V [in the Coulomb
case we have E, = —( r/2)!/%e?/ry) — Ref. 1]. A remar-
able property of Eq, (3) is that #,,, has no terms that
describe pair (one or more) creation from vacuum and
which make it unstable (compare with Ref, 2, where the
3D case is considered), We shall compensate the off-
diagonal terms in o by applying to the chemical poten-
tial 4 the condition

p=E,, 4)

We can easily show that if Eq. (4) is obeyed, a BCS-type
state |® ) = U*|0) represents an eigenvalue of the original
Hamiltonian # (| 0) represents vacuum for apy and bp,):

X|0) =W ()| ®>=0. ()

The condition for the normalization of the number of
particles in the | &) state gives the parameter ¢: v:=
sin?¢ = p, We shall now subject Eq, (5) to the operator
PN representing projection on states with N electrons and
N holes, and we shall allow for the fact that it commutes
with & (X conserves the number of particles), We then
obtain the exact eigenstate of 7, in the form of a wave
function of a Bose condensate of ideal excitons [an unim-
portant factor is omitted from Eq. (7)) :

Fie|Px) =NE| 0y, (6)
[®x>=Py| &> = (@3)"10> ™
[EQ. (6) can easily be demonstrated directly]|,

We can see that the ground state of such a system is
less than the energy of a noninteracting e—h system and
the difference is equal to the binding energy of N excitons
which amounts to NE,. The condition (4) is equivalent t0
4 = 0 for an ideal Bose gas below the Bose condensation
point (if the chemical potential is measured from the ex-
citon binding energy E,). In accordance with Ref. 1, it
follows from our wave function that the energy of the 5y5~
tem is not affected when the area of the system is altered
but the number of particles remains constant, An allow-
ance for transitions to the higher Landau levels removes
this property and makes a Bose exciton gas slightly non~
ideal (the interaction depends on the field H).
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