JavaScript is required for basic dynamic and interactive browsing.
  • Up to

Service Learning

As part of some courses in the Department of Chemistry & Biochemistry, students participate in service learning. Service learning involves activities that serve the department, university, and/or community while meeting the learning outcomes for the course. Many of these service learning projects involve developing chemistry activities or demonstrations and conducting these activities or demonstrations with the local community.

The following is a list of activities and demonstrations that have been developed by students in the Department of Chemistry and Biochemistry.

Activities indicated with an asterisk (*) should only be performed by teachers or others who have the experience/expertise to perform these activities safely.

Alcohol Jet Engine*
Isopropyl alcohol has many different uses in our lives. For example, it serves as a solvent and cleaning fluid for oil based compounds, a disinfectant in medicine, and is a way of preserving biological material. However, this experiment focuses on isopropyl alcohol’s vaporization properties. The vapor is naturally denser than air and is flammable with a combustible range between 2% and 12% in air. By mixing the vapor with the air inside of a 5 gallon water jug, a combustible chamber is produced that can be ignited in a controlled burst. This chemical reaction creates a rocket engine effect, which shoots a flame out of the opening of the container, while continuing to burn up the vapor-air mixture. 

Anti-Gravity Rice
Imagine picking up thousands of grains of rice by just picking up one pencil. In this experiment, you pour uncooked rice into a dry bottle, leaving a few inches empty at the top of the bottle. If you repeatedly jab a pencil into the rice in the bottle eventually the bottle will lift with the pencil. 

Anti-Gravity Water
In this experiment you will defy gravity! When the glass of water is turned over, the water does not fall out because the weight of the water increases the volume of the air in the glass which creates a vacuuming effect. The water molecules also bond together creating surface tension. 

Balloon Skewer
Have you ever tried to push a sharp object through a balloon? It most likely popped, right? Well this experiment will show you how to push a skewer through a balloon without popping it. The rubber of the balloon is made of many long strands or chains of molecules called polymers. The elasticity of these polymer chains causes rubber to stretch. Blowing up the balloon stretches the strands of polymers. By piercing the balloon through the point where the polymer molecules were stretched out the least, these polymer molecules stretch around the skewer and kept the air inside the balloon from rushing out. By pushing the lubricated skewer through the part of the balloon were the latex molecules are under the least amount of stress (where you tied the knot and the opposite end), you prevent the balloon from exploding. 

Bend Honey
In this experiment you will be demonstrating how molecules can be charged. The static electricity built up by rubbing your hair against a balloon attracts a stream of honey, bending it towards the balloon like magic! Negatively charged particles called electrons jump from your hair to the balloon as they rub together, the balloon now has extra electrons and is negatively charged. The honey features both positive and negatively charged particles and is neutral. Positive and negative charges are attracted to each other so when you move the negatively charged balloon towards the stream, it attracts the honey's positively charged particles and the stream bends!  

Blow Up Balloon
Have you ever blown up a balloon without using your mouth? This magical experiment involves the reaction of acetic acid and sodium bicarbonate to form a salt, water, and a gas called carbon dioxide. The gaseous carbon dioxide will be captured in a balloon. When the gases enters the balloon it will expand, while you just stand back and watch it happen! The reaction between sodium bicarbonate found in baking soda and acetic acid found in vinegar will release enough carbon dioxide to blow up a medium sized balloon.

Blue Goo
This blue goo or Oobleck is a Non-Newtonian fluid. That is, it acts like a liquid when being poured, but like a solid when a force is acting on it. You can grab it and then it will ooze out of your hands. Oobleck gets its name from the Dr. Seuss book, Bartholomew and the Oobleck. Where a gooey green substance, Oobleck, fell from the sky and wrecked havoc in the kingdom. Here the Oobleck will be made in a bowl and will likely make a mess, but only because you can get carried away playing with it. 

Briggs-Rauscher Oscillating Color Change Reaction*
The Briggs-Rauscher reaction, also known as 'the oscillating clock, is one of the most common demonstrations of a chemical oscillator reaction. The reaction begins when three colorless solutions are mixed together. The color of the resulting mixture will oscillate between clear, amber, and deep purple for about 3-5 minutes. The solution ends up as a purple-black mixture. 

Candy Chromatography
This is the process that separates the primary colors of skittles that makes up the secondary colors in each piece of candy. 

Chemical Chameleon*
Thie experiment is a bright and colorful way to demonstrate the properties of an oxidation-reduction reaction. When a tiny amount of potassium permanganate reacts with sugar and sodium hydroxide (commonly used for soap making), multiple reactions occur within a minute. The rapid chemical reactions create vibrant colors that can be observed by students.  

Cobalt Demo*
This demo illustrates several phenomena associated with the binding of ligands to the cobalt (II) ion. Firstly, Co(II) is a kinetically labile ion. That is, the positioning of the electrons allows for some repulsion of the ligands. In the complex, water is a somewhat stronger ligand than chloride ion, but their positions can be altered by such manipulations as (1) increasing the concentration of chloride with concentrated HCl, (2) adding more water, (3) adding ethanol. The ethanol changes the polarity of the solvent system and forces the chloride to coordinate more closely with the cobalt. Furthermore, an aqueous solution of cobalt (II) chloride that has been treated with just sufficient HCl as to be purple can be immersed in 50-55 oC H2O and the color will change to blue. This indicates that the association of the chloride ions with the cobalt is also influenced by an endothermic equilibrium. 

Magic Color Breakdown Chromatography
How many colors make up the marker that you use? You may think that your black marker is only black, but with this experiment you will be able to extract the different colors that make up the color of your marker. With a salt water solution the colors are more likely to stick to the paper as it travels along with the water. The water does not have enough room in its molecules for the color to be absorbed, thus, the color not fading out as it travels along the paper. 

Copper Sulfate*
Copper sulfate crystals have many practical applications such as it is used as a herbicide, fungicide, and pesticide. Perhaps the most prevalent use of copper sulfate is it is used in swimming pools as an algicide. It is also used to treat aquarium fish for parasitic infections. But in our case we are going to use them to make big crystal that can be seen as a precious rock. 

Dancing Raisins
What do you think would make a raisin dance? Would it be the music or something else? Well this experiment is going to describe how to make a raisin dance! 

Density Column
Have you ever put two different liquids together and observed how they mix together? Have you ever seen what happens when you mix oil and water? Most of you probably know that oil and water do not mix together, but do you know why? Today, we will learn about density, which is the reason why many liquids and other materials stay separated when you try to mix them. 

Detecting Bodily Fluids*
Have you ever wondered how clean your surroundings really are? Grab a blacklight and some darkness and see the bodily fluids come alive! A blacklight is essentially a normal fluorescent light tube with the white coating removed and a purple coating added. The white coating contains phosphorous and the light emitted in the tube causes phosphorous to glow giving off visible light. The purple coating blocks all visible light, but allows a harmless, non-visible ultraviolet light (UVA) to escape. The UVA will cause anything with phosphorous to glow. Since our bodily fluids are filled with various kinds of phosphorous, they glow! Test things such as cleaning agents to see if they glow and also try different bodily fluids such as sweat and saliva. 

Dissolving Cups
How many cups can you stack without them falling over? Ten, fifteen? More? Well, do you think you can stack as many cups while they’re melting? Styrofoam cups dissolve when they’re placed in acetone because Styrofoam is made up of molecules, called polymers. Acetone loosens these molecules up so that they no longer hold the air. Once this happens the Styrofoam no longer stays solid, and melts into goop! 

DNA Extraction From Wheat Germ*
Wheat germ is the DNA source in this protocol. Wheat germ comes from wheat seeds. The "germ" is the embryo, which is the part of the seed that can grow into a new wheat plant. When wheat seeds are milled into white flour, the wheat germ and wheat bran are removed, leaving only starch. 

Don't Smoke At A Gas Station*
This experiment is to show why there is no smoking in a gas station and why you have to be aware of static electricity. The gasoline fumes are highly flammable and when the spark is created... it blows.

Egg Drop
Will an egg fall onto your counter and break if placed on top of a toilet paper tube that is on a flat surface above a cup of water? Test Newton’s Law of Inertia- and your personal trust skills- with this simple and easy to set up experiment. 

Elephant Toothpaste
Hey kids! Today you get to make a cool explosion happen that looks like toothpaste an elephant would use. For this simple reaction, we will mix hydrogen peroxide and liquid soap. Then, we will add a catalyst to the mixture. This will help speed up the reaction by making hydrogen peroxide turn into oxygen and water. The water will then mix with the soap and makes foam, while the oxygen builds up pressure and pushes it out of the container. You will see foam shooting out like fireworks in a color of your choice! 

Exploding Gummy Bears*
In this experiment, a demonstration of a spontaneous exothermic reaction will take place between a gummy bear and molten potassium chlorate. Once the potassium chlorate has been melted in a test tube, a gummy bear will be dropped to his doom and flames will burst out of the tube as a result. 

Exploding Toothpaste*
Mix two solutions together and you get an amazing eruption of foam that looks like a giant stream of toothpaste exploding from the cylinder. Some people refer to this foam as elephants toothpaste. This demonstration is guaranteed to produce a room full of ooohs and ahhhs the moment the foam begins to erupt from the bottle. 

Exploding Ziploc Bag
What happens inside the bag is actually pretty interesting- the baking soda and vinegar eventually mix (the tissue buys you some time to zip the bag shut) When they do mix, you create an ACID-BASE reaction and the two chemicals work together to create a gas, (carbon dioxide- the stuff we breathe out). Well it turns out the gasses need a lot of room and the carbon dioxide starts to fill the bag, and keeps filling the bag until the bag can no longer hold it anymore and, POP! 

This project involves making a magnetic liquid that is fun to play with and fun to make.    

Floating Bubbles
Bubbles are lots of fun! But normally they fall to the ground and pop, this experiment will teach you how to keep them floating. By mixing baking soda and vinegar you make a reaction that produces carbon dioxide gas. The carbon dioxide gas settles above the liquid in the bottom of the bucket in an invisible layer. The air you blow through the bubble wand contains oxygen and carbon dioxide. This means the bubbles will contain an oxygen and carbon dioxide gas mix that is lighter than the pure carbon dioxide gas at the bottom of the bucket. Once the bubbles float down into the bucket they will start floating on the invisible layer of carbon dioxide gas produced by the chemical reaction. 

Floating Egg
In this experiment you will make an egg float in salt water. Have you ever noticed that it is easier to float in the ocean than in a river or a pool? This is because of the salt in the water. Just like you in the ocean, the egg will float in a glass of salt water. When salt is added to water the water becomes dense, density is the amount of matter contained in a given space. With this said, when the water becomes denser (heavier) than the egg, the egg will float. 

Ghost Bubbles
Hey kids! Today you get to make cool bubbles that look like ghosts. For this simple reaction, we will mix water and liquid soap in a small container. Then, we will assemble a container that has a hose connected to it. Inside the hose we will add warm water and dry ice. This will help speed up the formation of gas. The hose attached to the container will have a nozzle on it and will be dunked in the soapy mixture. As a result, the gas pressure will form a bubble. If done carefully, you will get to see bubbles quickly forming that have a ghostly white gas inside them! 

Glowing Jello
This isn’t a cheat, and it’s not an optical illusion—these are simply tonic jellos made by adding gelatin to warm tonic water and it could be left to set or viewed while still in liquid form. So why are they glowing that fantastic ghostly color? The answer is that quinine–the bitter flavoring in tonic water– glows under a black light. The bigger the bulb, the better the glow. The great thing about this Jell-O, other than its glowiness, is that it is edible or drinkable! Are you guys ready to see with your own eyes if we are really able to make Jell-O glow?    

Glowing Lava Lamp
Organic chemistry is all around us. Most of the time, it exists in forms invisible to the naked eye, but often times, it manifests itself in physical properties that are clearly visible to all. Why do oil and water not mix? Why do some compounds glow under UV light? These are physical properties that can easily be observed, but are not entirely understood. The purpose of this experiment is to explore some organic chemistry concepts, such as hydrophobicity and hydrophilicity, and molecular structure, to provide an understanding of just how widespread organic chemistry is and how it affects so many aspects of the visible world around us. 

Gold Pennies*
What would you guys do if you could make gold from your own home? Back in the medieval days we had what we call alchemist! Alchemist use to spend weeks trying to convert metals into gold! However, they were never able to succeed! Today we will be alchemist and try to make gold! We are going to have our pennies in NaOH and zinc solution, and a chemical reaction will be taking place called galvanization. Galvanization is what is going to cause our pennies to appear silver because it was coat them with zinc. The heat from the hot plate is going to cause the zinc and copper from the pennies to merge together producing what seems like gold but is really brass. 

Growing A Culture*
Bacteria are a fascinating type of organism which play a large role in our lives whether we like it or not. Try growing your own sample of bacteria while monitoring how it reproduces in a short period of time. Compare your original sample with that of others and get proof that bacteria are truly everywhere. 

Hidden Messages
Have you ever needed to get a message to someone but you didn’t want anyone else to read it? You could use a code or you might try invisible ink. Invisible ink is easy to make and can make you feel like a secret agent. With the invisible ink you can keep notes that you don’t want anyone else to see hidden or you can pass secret messages to your friends. This can be done with some simple household items. 

How to Make Slime
Slime is fun material that you can make yourself using common household ingredients. The ingredients start out as liquids, but when you mix them together chemical bonds form between the molecules in the slime, forming a substance known as a polymer. You encounter polymers every day. Examples of common polymers include the cellulose in paper and trees, keratin in hair and nails, and all types of plastics. 

Iodine Clock Reaction*
The sudden change from a colorless solution to the blue-black solution is the result of four sequential reactions. First, the bisulfite ions (HSO3-) reduce some of the iodate ions (IO3-) to form iodide ions (I-). Next, the iodide ions (I-) are oxidized by the remaining iodate ions (IO3-) to form triiodide ions (I3-). The solution now consists of triiodide ions (I3-) and soluble starch. In the third reaction, the triiodide ions (I3-) get reduced by the bisulfite ions (HSO3-) to become iodide ions (I-). That continues until all of the bisulfite has been consumed. Finally, the triiodide ions and starch combine to form the dark blue-black starch complex that looks like ink. 

Luminol Blood Detection*
Have you ever wondered how Crime Scene Investigators (CSI) are able to make blood glow at suspected crime scenes? Bring out your inner CSI self and enjoy this amazing project. Test it on fresh blood and older blood to see the different results. Also try different blood to see the variance. 

Magic Colored Milk
If you add food coloring to milk, bot a whole lot happens, but it only takes one simple ingredient to turn the milk into a swirling color wheel. Here is what you do. 

Make A Duck Call
This is science? It sure is. You see all sounds come from vibrations. That little triangle that you cut in the straw forced the two pieces of the point to vibrate very fast against each other when you blew through the straw. Those vibrations from your breath going through the straw created that strange duck-like sound that you heard. Now you will never be bored again when you go to a fast food restaurant. 

Make A Paper Clip Float
Have you ever noticed that some things float while other things sink? The reason things sink or float is all determined by densities. An object that has an overall density lower than the density of the fluid it is placed in will float. While an object that has an overall higher density than the density of the fluid it is placed in will sink. So is it possible to have an object with a density higher than that of water float in water?  

Making A Fire With A Drop Of Water*
Normally people would use water to put out a fire, but in this experiment a drop of water will be used to ignite a fire. A drop of water will be placed on a mixture to instantly ignite a blue-green flame and smoke after. 

Everyone has tried shaking a can of soda and then opening it. What a mess! But did you know you can get a more amazing effect and turn a regular bottle of soda into a super fountain. Today, Mentos will be dropped into different types of carbonated soft drinks to create a monster soda fountain. The microscopic ridges in the candy and some key ingredients that make up the shell of the candy allows the bubbles to combine and build up, releasing the soda into a large geyser up to a few meters tall! We will also be comparing different types of soda to see which ones work the best. 

Milk Explosions
Not only is milk good for you but it is also the key ingredient for making a colorful explosion!!! How you ask?? The fat in milk reacts with the compounds in dish soap to create an explosion of colors with food coloring. The key component of this experiment is a molecule known as a micelle. Micelles are molecules that are clumped together that spread out fat in milk when soap is added. Because milk is mostly composed of water, the micelles in the soap will break water bonds. As chemists we get to explore and observed our questions and hypotheses. 

Penny And Nickel Battery
Is it possible to create your own battery? Well yes it is possible and quite simple to create your own battery. For this experiment you will make a battery out of pennies and nickels. When done, you will be able to create about 1 volt. 

Polymers are everywhere! You can find them as plastics in cell phones, nylon in jackets, silicone in cookware, and synthetic rubber in tires. There are many types of polymers for many types of uses. We will explore the diverse nature of polymers to see how different they can be. Polymers are like long strands of noodles. When they are attached to one another, they can forms larger and larger strands. Depending on the “glue” used to attach the polymers together, the polymer can be hard, soft, slimy, or stiff and everything else in between. 

Simulated Stomach Acid*
Have you ever wondered about the process of food breaking down in your stomach? Your stomach contains a very powerful acid that breaks down the food you eat into tiny molecules. This lab can be used with various food items to simulate this process by creating an acid of the same temperature and same acidity of an average stomach. 

Sock Bubbles
Soap bubbles are essentially thin films of soap filled with air. They usually come out individually and pop very easily. When the individual bubbles are coming out of something like a sock, they stick together and form a long thick strand of fun messy foam. 

Sodium Polyacrylate*
This lesson incorporates concepts of Conservation of Mass, Properties of Matter, Metric Measurement and Conversion, and Observation Skills.

Sterno is useful for camping, fondue, pyro, and setting objects on fire. The following will information will instruct you on how to make Sterno flaming jelly from Antacid, Vinegar, and Alcohol. This sterno was made using calcium carbonate antacid tablets, vinegar, and either ethanol or isopropyl. Antacid tablets were crushed and added to vinegar to make calcium acetate. The Calcium acetate was then added to the ethanol or alcohol. The calcium acetate causes the alcohol to gel. 

Sulfur Thermite*
How many times have you needed to weld together a Train rails and thought how in the world will I do this? Well now that very sought after question has been solved, use sulfur thermite. Thermite has been known and used before, but mainly different materials are used in the making of it. For this termite we will use sulfur, aluminum powder, and wait for it sand... yes sand. 

Can art and chemistry be combined? Today, we will create some designs in a piece of cloth. After today, you can put some art and chemistry in your t-shirts, of course, if your parents allow you! You are probably thinking what does this have to do with chemistry? It has to do with solubility, color mixing, and movement of molecules. We all know Sharpies are permanent markers, and they will not wash away with water because they are made of waterproof ink. This ink is therefore hydrophobic; it doesn’t mix with water. What if we use another type of solvent? Maybe alcohol? Since pigment molecules are large and not very polar, they are soluble in solvents are less-polar than water and contain long carbon chains like in rubbing alcohol. 

Ziploc Pencil Puncture
Have you ever attempted to push a sharp object through a Ziploc bag containing water? Most likely, it would leak all over, right? Well, this experiment will show you how to push sharpened pencils through a Ziploc bag filled with water without it leaking. The Ziploc bag is made up of Polyethylene. It contains molecules called polymers. The polymers cause the baggie to stretch and seal around the pencil preventing the water from escaping. 

* Teachers Only


Department of Chemistry & Biochemistry

California State University, Bakersfield
9001 Stockdale Highway
Bakersfield, CA  93311-1022 

Phone: (661) 654-3027
Fax: (661) 654-2040
Office: Science II 273