Solutions for Practice Exam 1

1. Consider the reaction
 \[\text{S}_2\text{O}_8^{2-} + 3 \text{I}^- \rightarrow 2\text{SO}_4^{2-} + \text{I}_3^- \]

 which one of the following rate expressions would give the same value as the rate of disappearance of \(\text{S}_2\text{O}_8^{2-} \)?

 b. rate = \(-1/3(\Delta[I^-]/\Delta t)\)

2. The exponents (= orders) in a rate law are determined by
 1. the coefficients in the balance equation.
 2. experiment.
 3. the physical states of the reactants and products.

 b. 2 only

3. After five half-life periods for a first-order reaction, what is the molarity of a reagent initially at 0.366 M?

 a. \(1.14 \times 10^{-2}\)

4. If the half-life of a first-order process is 3.00 minutes, the rate constant for the process is

 e. \(0.231/\text{min.}\)

5. Under which of the following conditions does the equilibrium constant \(K \) change for the reaction

 \[\text{H}_2(\text{g}) + \text{I}_2(\text{g}) \leftrightarrow 2\text{HI}(\text{g}) \]

 d. changing the temperature

6. Hydrogen peroxide decays into water and oxygen in a first-order process.

 \[\text{H}_2\text{O}_2(\text{aq}) \rightarrow \text{H}_2\text{O}(\cdot) + 1/2 \text{O}_2(\text{g}) \]

 where the rate expression is \(-\Delta[\text{H}_2\text{O}_2]/\Delta t = k[\text{H}_2\text{O}_2]\). If we begin with 0.100 M \(\text{H}_2\text{O}_2 \) and find that after 3200 seconds, the peroxide concentration falls to 0.0825 M, what is the rate constant, \(k \), at the temperature at which the experiment is performed?

 b. \(6.01 \times 10^{-5} \text{ s}^{-1}\)
7. In basic solution, \((\text{CH}_3)_3\text{CCl}\) reacts according to the equation

\[(\text{CH}_3)_3\text{CCl} + \text{OH}^- \rightarrow (\text{CH}_3)_3\text{COH} + \text{Cl}^-\]

The accepted mechanism for the reaction is

\[(\text{CH}_3)_3\text{CCl} \rightarrow (\text{CH}_3)_3\text{C}^+ + \text{Cl}^- \quad \text{(slow)}\]

\[(\text{CH}_3)_3\text{C}^+ + \text{OH}^- \rightarrow (\text{CH}_3)_3\text{COH} \quad \text{(fast)}\]

What is the rate law expression for the reaction?

d. \(\text{rate} = k[(\text{CH}_3)_3\text{CCl}]\)

8. The activation energy for \(2\text{N}_2\text{O}(g) \rightarrow 2\text{N}_2(g) + \text{O}_2(g)\) is 250. kJ. If \(k\) for this reaction is 0.380 \(\text{M}^{-1}\text{s}^{-1}\) at 1001 K, what will \(k\) be at room temperature, 298 K?

a. \(6.36 \times 10^{-32}\)

d. \(0.66\)

9. If \(K_c = 0.44\) for the reaction \(2\text{NOBr}(g) \leftrightarrow 2\text{NO}(g) + \text{Br}_2(g)\) at a particular temperature, what is \(K_c\) for the following reaction?

\[\text{NOBr}(g) \leftrightarrow \text{NO}(g) + \frac{1}{2}\text{Br}_2(g)\]

d. \(0.66\)

10. A chemist prepared a sealed tube with 0.85 atm of \(\text{PCl}_5\) at 500 K. The pressure increased as the following reaction occurred. When equilibrium was achieved, the pressure in the tube had increased to 1.25 atm. Calculate \(K_p\).

\[\text{PCl}_5(g) \leftrightarrow \text{PCl}_3(g) + \text{Cl}_2(g)\]

a. \(0.36\)

11. A 1.00 liter flask contained 0.24 mol \(\text{NO}_2\) at 700 K which decomposed according to the following equation. When equilibrium was achieved, 0.14 mol \(\text{NO}\) was present. Calculate \(K_c\).

\[2\text{NO}_2(g) \leftrightarrow 2\text{NO}(g) + \text{O}_2(g)\]

d. \(1.4 \times 10^{-1}\)
12. A mixture of 0.30 mol NO and 0.30 mole CO$_2$ is placed in a 2.00 L flask and allowed to reach equilibrium at a given temperature. Analysis of the equilibrium mixture indicated that 0.10 mol of CO was present. Calculate K_c for the reaction.

\[
\text{NO(g) + CO}_2\text{(g) \leftrightarrow NO}_2\text{(g) + CO(g)}
\]

c. 0.25

13. A flask contains the following system at equilibrium:

\[
\text{Mg(OH)}_2\text{(s) \leftrightarrow Mg}^{2+}\text{(aq) + 2 OH}^{-}\text{(aq)}
\]

Which of the following reagents could be added to increase the solubility of Mg(OH)$_2$?

c. HCl

14. For the gas phase reaction, $3\text{H}_2 + \text{N}_2 \rightarrow 2\text{NH}_3$, how does the rate of disappearance of H$_2$ compare to the rate of production of NH$_3$?

c. The rate of disappearance of H$_2$ is 3/2 the rate of appearance of NH$_3$.

15. The reaction

\[
\text{CH}_3\text{CHO(g) \rightarrow CH}_4\text{(g) + CO(g)}
\]

proceeds via the rate expression $\Delta[\text{CO}] / \Delta t = [\text{CH}_3\text{CHO}]^{3/2}$. What is the overall order of the reaction?

e. three-halves-order

16. The half-life for a first-order reaction at 550 ºC is 85 seconds. How long would it take for 23% of the reactant to decompose?

c. 32 seconds

17. The decomposition of phosphine, PH$_3$, follows first-order kinetics:

\[
4\text{PH}_3\text{(g) \rightarrow P}_4\text{(g) + 6H}_2\text{(g)}
\]

The half-life for the reaction at 550 ºC is 81.3 seconds. How long does it take for the reaction to be 78.5% complete?

e. 180 seconds

18. What is the half-life of a first-order reaction which is 15% complete after 210 seconds?

e. 895 seconds
19. Calculate the activation energy, E^0, for

$$\text{N}_2\text{O}_5(g) \rightarrow 2\text{NO}_2(g) + \frac{1}{2} \text{O}_2(g)$$

given k (at 25 °C) = 3.46 x 10^{-5}/s and k (at 50 °C) = 1.10 x 10^{-3}/s. $R = 8.3145 \times 10^{-3}$ kJ/mol·K.

b. 111 kJ

20. In which case does the reaction go farthest to completion (to the products)?

a. $K = 10^4$

21. For the reaction below, what is the expression for K_C?

$$2\text{H}_2(g) + 2\text{FeO(s)} \leftrightarrow 2\text{Fe(s)} + 2\text{H}_2\text{O(g)}$$

d. $K_C = [\text{H}_2\text{O}]^2/[\text{H}_2]^2$

22. Consider the reaction $2\text{A(g)} \leftrightarrow \text{B(g)}$ where $K_C = 0.5$ at the temperature of the reaction. If 2.0 moles of A and 2.0 moles of B are introduced into a 1.00 liter flask, what change in concentrations (if any) would occur in time?

b. [A] increases and [B] decreases

e. [A] and [B] remain the same

23. Consider the reaction $\text{A(g)} \leftrightarrow 2\text{B(g)}$ where $K_C = 1.5$ at the temperature of the reaction. If 3.0 moles of A and 3.0 moles of B are introduced into a 1.00 liter flask, what change in concentrations (if any) would occur in time?

b. [A] increases and [B] decreases

24. Exactly 0.50 mole of sulfur trioxide, 0.10 mole of sulfur dioxide, 0.20 mole of nitrogen monoxide and 0.30 mole nitrogen dioxide are sealed in a 1.0-L flask at 1500 °C. The equilibrium constant K_C is 0.24 for the following reaction.

$$\text{SO}_3(g) + \text{NO(g)} \leftrightarrow \text{SO}_2(g) + \text{NO}_2(g) \quad K_C = 0.24$$

When equilibrium is achieved, what changes in concentrations of SO_3 and NO will be observed?

a. $[\text{SO}_3]$ increases; $[\text{NO}]$ increases

25. For the equilibrium system

$$\text{H}_2\text{O(g)} + \text{CO(g)} \leftrightarrow \text{H}_2(g) + \text{CO}_2(g) \quad \Delta H = -42 \text{ kJ/mol}$$

K equals 0.62 at 1260 K. If 0.10 mol each of H_2O, CO, H_2 and CO_2 (all at 1260 K) were placed in a 1.0 L thermally insulated vessel which was also at 1260 K, then when the system came to equilibrium

a. the temperature would decrease and the mass of CO would increase.