Article title: Extensive drought-associated plant mortality as an agent of type-conversion in chaparral shrublands Authors: Jacobsen AL, Pratt RB Article acceptance date: 21 March 2018 The following Supporting Information is available for this article:

Table S1. Maximum and mean rooting depth as reported by various sources for chaparral shrub species that were surveyed for mortality. Full references for sources are included in Note S1.

Species	Max. Rooting Depth (m; as reported by source)							Mean rooting depth (m)	Rooting Depth (m)	
	Canadell et al. 1996	Hanes 1965	Thomas and Davis 1989	Redfeldt and Davis 1996	Jarbeau et al. 1995	Davis et al. 1998	Hellmers et al. 1955 (Hydraulic excavation)	Hellmers et al. 1955 (Road cuts)	Feng et al. 2017 (calculated)	Across study average
Adenostoma fasciculatum	2.5	3.2		2.5		2.4	2.7	8.3		3.6
A. sparsifolium	2.4	2.3		13.0		6.0				5.9
Arctostaphylos glauca	2.6						2.8			2.7
Ceanothus crassifolius							1.5			1.5
C. greggi							1.5			1.5
C. megacarpus	2.4		2.2			2.4				2.3
C. spinosus	3.1		2.8							2.9
Cercocarpus betuloides							1.7			1.7
Heteromeles arbutifolia					2.2		2.2			2.2
Malosma (Rhus) laurina	13.2		5.3		13.0	13.2				11.2
Quercus berberidifolia	8.5						2.7	9.3		6.8
Quercus cornelius-mulleri									3.5	3.5
\tilde{c} Rhus ovata									5.0	5.0

Article title: Extensive drought-associated plant mortality as an agent of type-conversion in chaparral shrublands Authors: Jacobsen AL, Pratt RB Article acceptance date: 21 March 2018 The following Supporting Information is available for this article:

Table S2. Rooting depth as qualitatively reported in sources and as inferred from the data reported in Table S1 for chaparral shrub species that were surveyed for mortality. Full references for sources are included in Note S1.

Species		Rooting Depth	Mean Rooting Depth (Category)		
	Reviewed in Meentemeyer et al. 2001 and Ochel et al. 1981	Poole and Miller 1975	Pratt et al. 2015 (personal observation)	Pratt et al. 2007 (personal observation)	Estimated rooting depth category based on reported categories (left) and values (Table S1)
Adenostoma fasciculatum	Deep	Intermediate	Intermediate		Intermediate
A. sparsifolium					Deep
Arctostaphylos glauca	Shallow	Shallow			Shallow
Ceanothus crassifolius	Shallow			Shallow	Shallow
C. cuneatus				Shallow	Shallow
C. greggi	Shallow	Shallow	Shallow		Shallow
C. megacarpus	Shallow			Shallow	Shallow
C. spinosus	Deep			Intermediate	Intermediate
Cercocarpus betuloides	Deep				Intermediate
Heteromeles arbutifolia	Deep	Intermediate			Intermediate
Malosma (Rhus) laurina	Deep	Deep	Deep		Deep
Quercus berberidifolia	Deep				Deep
Quercus cornelius-mulleri					Deep
Rhamnus ilicifolia				Intermediate	Intermediate
Rhus ovata	Deep	Deep	Deep		Deep

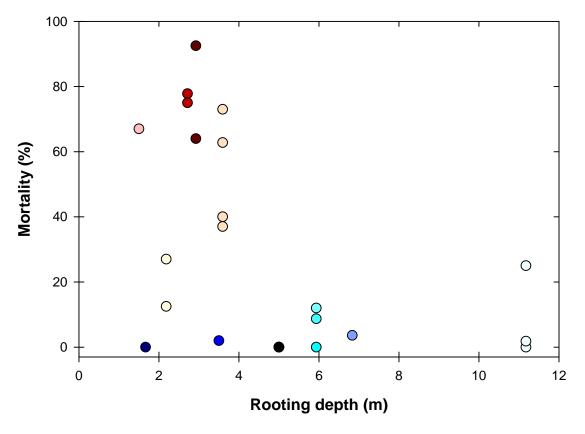
Article title: Extensive drought-associated plant mortality as an agent of type-conversion in chaparral shrublands

Authors: Jacobsen AL, Pratt RB

Article acceptance date: 21 March 2018

The following Supporting Information is available for this article:

Table S3. Reported chaparral shrub species mortality as reported by source and life history stage (adult or resprout). For each species, a species abbreviation (Abbev.) is reported as well as the life history type [R indicates resprouting (+) or non-resprouting (-) and S indicates fire-stimulated seedling recruitment (+) or not (-)]. Full references for sources are included in Note S1.


Species	Abbrev.	Life history stage	Life history type	Mortality (% or observation)	Mortality data source
Adenostoma fasciculatum	Af	Adult	R+S+	62.8	Venturas et al. 2016
		Adult		37	Paddock et al. 2013
		Adult		low	Coates et al. 2015
		Resprout		73	Pratt et al. 2014
		Resprout		40	Pausas et al. 2015
A. sparsifolium	As	Adult	R+S+	8.7	Venturas et al. 2016
		Adult		12	Paddock et al. 2013
		Resprout		0	Pratt et al. 2014
Arctostaphylos glauca	Ag	Adult	R-S+	77.8	Venturas et al. 2016
		Adult		75	Paddock et al. 2013
Ceanothus cuneatus	Cc	Adult	R-S+	71.4	Venturas et al. 2016
		Adult		high	Coates et al. 2015
C. greggi	Cg	Adult	R-S+	67	Paddock et al. 2013
C. megacarpus	Cm	Adult	R-S+	high	Coates et al. 2015
C. spinosus	Cs	Adult	R+S+	high	Coates et al. 2015
		Adult		91.7-93.3	Venturas et al. 2016
		Resprout		64	Pratt et al. 2014
Cercocarpus betuloides	Cb	Adult	R+S-	0	Venturas et al. 2016
Heteromeles arbutifolia	На	Adult	R+S-	12.5	Venturas et al. 2016
		Resprout		27	Pratt et al. 2014
Malosma laurina	Ml	Adult	R+S+	0-3.6	Venturas et al. 2016
		Adult (+pathogen)		0-50	Aguirre et al. 2017
		Resprout		0	Pratt et al. 2014
Quercus cornelius-mulleri	Qc	Adult	R+S-	2	Paddock et al. 2013
Rhamnus ilicifolia	Ri	Adult	R+S-	33.3-100	Venturas et al. 2016
		Resprout		0	Pratt et al. 2014
Rhus ovata	Ro	Adult	R+S+	0	Venturas et al. 2016
		Adult		0	Paddock et al. 2013
		Resprout		0	Pratt et al. 2014

Article title: Extensive drought-associated plant mortality as an agent of type-conversion in chaparral shrublands

Authors: Jacobsen AL, Pratt RB

Article acceptance date: 21 March 2018

The following Supporting Information is available for this article:

Figure S1. The relationship between rooting depth and mortality. All of the species that exhibited high levels of mortality had relatively shallow rooting depths (<4 m). Points that are the same color are from the same species and differ due to life stage or source. See Figure 2c for the key to species identities by color.

Article title: Extensive drought-associated plant mortality as an agent of type-conversion in chaparral shrublands Authors: Jacobsen AL, Pratt RB Article acceptance date: 21 March 2018 The following Supporting Information is available for this article:

Supporting Information References

Aguirre NM, Ochoa ME, Holmlund HI, Ewers FE, Davis SD. 2017. Hydraulic mechanisms of fungal-induced dieback in a keystone chaparral species during unprecedented drought in California. Pepperdine University, Digital Commons, Malibu, USA.

Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze ED. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583-595.

Coates AR, Dennison PE, Roberts DA, Roth KL. 2015. Monitoring the impacts of severe drought on southern California chaparral species using hyperspectral and thermal infrared imagery. Remote Sensing **7**: 14276-14291.

Davis SD, Kolb KJ, Barton KP. 1998. Ecophysiological processes and demographic patterns in the structuring of California chaparral. In: Rundel PW, Montenegro G, Jaksic FM, eds. *Landscape disturbance and biodiversity in mediterranean-type ecosystems*. Springer Berlin Heidelberg, Germany, 297-310.

Feng X, Dawson TE, Ackerly DD, Santiago LS, Thompson SE. 2017. Reconciling seasonal hydraulic risk and plant water use through probabilistic soil-plant dynamics. Global Change Biology **23**: 758-3769.

Hanes T. 1965. Ecological studies on two closely related chaparral shrubs in southern California. Ecological Monographs 35: 213-235.

Hellmers H, Horton J, Juhren G, O'Keefe J. 1955. Root systems of some chaparral plants in Southern California. Ecology **36**: 667-678.

Jarbeau JA, Ewers FW, Davis SD. 1995. The mechanism of water-stress-induced embolism in two species of chaparral shrubs. Plant, Cell & Environment 18: 189-196.

Meentemeyer RK, Moody A, Franklin J. 2001. Landscape-scale patterns of shrub-species abundance in California chaparral–the role of topographically mediated resource gradients. Plant Ecology **156**: 19-41.

Oechel WC, Lawrence W, Mustafa J, Martínez J. 1981. Energy and carbon acquisition. In: Miller PC, ed. *Resource use by chaparral and matorral*. Springer, New York, NY, USA, 151-183.

Paddock III WA, Davis SD, Pratt RB, Jacobsen AL, Tobin MF, López-Portillo J, Ewers FW. 2013. Factors determining mortality of adult chaparral shrubs in an extreme drought year in California. Aliso 31: 49-57.

Pausas JG, Pratt RB, Keeley JE, Jacobsen AL, Ramirez AR, Vilagrosa A, Paula S, Kaneakua-Pia IN, Davis SD. 2016. Towards understanding resprouting at the global scale. New Phytologist **209**: 945-954.

Poole D, Miller P. 1975. Water relations of selected species of chaparral and coastal sage communities. Ecology **56**: 1118-1128.

Article title: Extensive drought-associated plant mortality as an agent of type-conversion in chaparral shrublands Authors: Jacobsen AL, Pratt RB Article acceptance date: 21 March 2018 The following Supporting Information is available for this article:

Pratt RB, Jacobsen AL, Ewers FW, Davis SD. 2007. Relationships among xylem transport, biomechanics, and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist **174**: 787-798.

Pratt RB, Jacobsen AL, Ramirez AR, Helms AM, Traugh CA, Tobin MF, Heffner MS, Davis SD. 2014. Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global Change Biology 20: 893-907.

Pratt RB, MacKinnon ED, Venturas MD, Crous CJ, Jacobsen AL. 2015. Root resistance to cavitation is accurately measured using a centrifuge technique. Tree Physiology **35**: 185-196.

Redtfeldt RA, Davis SD. 1996. Physiological and morphological evidence of niche segregation between two co-occurring species of *Adenostoma* in California chaparral. Ecoscience **3**: 290-296.

Venturas MD, MacKinnon ED, Dario HL, Jacobsen AL, Pratt RB, Davis SD. 2016. Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California's historic drought of 2014. PloS One **11**: e0159145.