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Fig. S1 Standard major axis residuals (SMA) vs ordinary least squares (OLS) residuals. Note that 

SMA residuals include variation on both the x- and y-axes, whereas OLS residuals include only 

variation on the y-axis. As such, OLS residuals reflect variation orthogonal to x, whereas SMA 

residuals reflect variation orthogonal to the y–x fit. By plotting the third variable against the 

efficiency–safety SMA residuals, the degree to which the third variable modifies the efficiency–

safety relationship can be assessed.    
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Fig. S2 Hydraulic efficiency-safety (P88) plots for angiosperm species. Axes have been log10 

scaled. Different colours represent different (a) leaf habits, (b, c) taxonomic groups, (d–f) plant 

structural traits, and (g–i) site factors. Continuous variables were binned in roughly equal 

groups of four with bin ranges denoted in the legends.   



 

 

Fig. S3 Hydraulic efficiency-safety (P88) plots for gymnosperm species. Axes have been log10 

scaled. Different colours represent different (a–c) taxonomic groups, (d–f) plant structural 

traits, and (g–i) site factors. Continuous variables were binned in roughly equal groups of four 

with bin ranges denoted in the legends.   



 

 

Fig. S4 Hydraulic efficiency-safety (P12) plots for angiosperm species. Axes have been log10 

scaled. Different colours represent different (a) leaf habits, (b, c) taxonomic groups, (d–f) plant 

structural traits, and (g–i) site factors. Continuous variables were binned in roughly equal 

groups of four with bin ranges denoted in the legends.   



 

 

Fig. S5 Hydraulic efficiency-safety (P12) plots for gymnosperm species. Axes have been log10 

scaled. Different colours represent different (a–c) taxonomic groups, (d–f) plant structural 

traits, and (g–i) site factors. Continuous variables were binned in roughly equal groups of four 

with bin ranges denoted in the legends.   



 

 
 

Group    Slope   Intercept  r2 P 

Exponential 1.90 -3.07 0.13 0.026 

Sigmoidal 2.36 -3.48 0.60 <0.001 

Other 2.69 -4.02 0.11 0.081 

Slope compare    0.318 

Intercept compare    <0.001 

 

Fig. S6 Comparison of ‘curve shapes’ exhibited by fitted bivariate models (i.e. P50 curve) for 

angiosperm species in the database. Trendlines with significantly higher elevation coefficients 

indicate greater efficiency at a given hydraulically weighted vessel diameter, and therefore, 

suggests a methodological artifact. However, although exponential curves are thought to be 

associated with ‘open’ vessels (i.e. less resistance), samples fit with exponential curves tended 

to have lower efficiency, not higher.   

 

 

  



 

 
Group    Slope   Intercept  r2 P 

Air injection 1.63 -2.60 0.46 <0.001 

Centrifuge 2.28 -3.41 0.13 0.001 

Dehydration 2.10 -3.12 0.70 <0.001 

Slope compare    0.143   

Intercept compare    0.013 

 

Fig. S7 Comparison of methods used for generating P50 data. Trendlines exhibiting significantly 

higher elevation indicates greater efficiency at a given hydraulically weighted vessel diameter 

and therefore suggests a methodological artifact. Only methods which reported both efficiency 

and hydraulically weighted vessel diameter are included here. ‘Air injection’ includes the 

double-ended method only. ‘Centrifuge’ does not include data collected using the Cavitron 

method (Cochard, 2002).   

 

Cochard H. 2002. A technique for measuring xylem hydraulic conductance under high negative 

pressures. Plant, Cell & Environment 25: 815-819. 

 

  



 

Table S1 Standard major axis (SMA) efficiency–safety models fit to individual angiosperm and 

gymnosperm groups 

 

Angiosperms  r2  Slope  Intercept   P df 
 
All angiosperm species 0.048 -1.67 1.09 <0.001 239 
 
Phenology  
 Evergreen 0.053 -1.81 1.27 0.004 149  
 Winter deciduous 0.122 -1.59 0.80 0.019 43 
 Drought deciduous 0.005 1.90 -0.75 0.643 43 
 
Families  
 Anacardiaceae 0.025 -2.32 1.76 0.662 8  
 Asteraceae 0.500 -0.82 0.31 0.010 10  
  Boraginaceae 0.310 -2.38 2.07 0.194 5  
 Ericaceae 0.526 1.20 -1.35 0.018 8  
 Euphorbiaceae 0.485 -2.92 1.64 0.006 12  
 Fabaceae 0.074 -2.39 1.75 0.222 20  
 Fagaceae 0.058 -1.14 0.77 0.335 16  
 Proteaceae 0.229 -1.62 1.03 0.136 9  
 Rhamnaceae 0.054 -1.78 1.84 0.493 9  
 Rosaceae 0.336 1.53 -1.34 0.132 6 
 Sapindaceae 0.017 -3.41 2.01 0.717 8 
 
Genera   
 Acer 0.012 -3.54 2.12 0.776 7  
 Ceanothus 0.056 -1.51 1.55 0.609 5  
 Cordia 0.310 -2.38 2.07 0.194 5  
 Quercus 0.311 -0.89 0.53 0.031 13 
 

Gymnosperms r2  Slope  Intercept   P df 
 
All gymnosperm species 0.004 -1.73 1.14 0.624 57 
 
Families  
 Cupressaceae 0.184 -2.37 1.99 0.013 31  
 Pinaceae 0.000 3.38 -2.75 0.935 19 
  
Genera   
 Juniperus 0.003 -1.75 1.30 0.859 11  



 

 Pinus 0.027 -2.60 1.27 0.609 10  
 
Species 
 Juniperus communis 0.378 2.75 -2.72 0.104 6  
 Picea abies 0.111 -5.16 2.98 0.382 7  
 Pinus ponderosa 0.186 -2.92 1.61 0.334 5  
 Pinus sylvestris 0.198 -1.80 0.90 0.097 13  
 

Safety is defined as the xylem water potential at which maximal conductivity declines by 88%. 

Statistically significant P-values (α = 0.05) are denoted with bold text.    

 

 

 

 

 

  



 

Table S2. Fit statistics for linear multiple regression models, with efficiency and safety as 

predictor variables and various structural and climatological traits as the dependent third 

variable 

 
  r2

P88 r2
Ks r2

resid df   
 
Angiosperms 
 

Wood density 0.068* 0.194*** 0.018 152    
Leaf-area to sapwood-area 0.021 0.184*** 0.042* 142    
Maximum height 0.044 0.101** 0.007 120 
Predawn water potential 0.297*** 0.173*** 0.009 101 
Mean annual precipitation 0.004 0.142*** 0.035** 228  
Mean annual temperature 0.026 0.172*** 0.034** 229 
Number of freezing days 0.002 0.115*** 0.077*** 182 

 
Gymnosperms  
 

Wood density 0.153** 0.220*** 0.003 40   
Leaf-area to sapwood-area 0.019 0.268* 0.082 20   
Maximum height 0.048 0.286*** 0.051 44 
Predawn water potential 0.263 0.640** 0.060 6   
Mean annual precipitation 0.037 0.028 0.004 29   
Mean annual temperature 0.063 0.003 0.041 29 
Number of freezing days 0.020 0.028 0.004 29 

 

Safety is defined as the xylem water potential at which maximal conductivity declines by 88%. 

Coefficient of determination values represent the proportion of total variation in the third variable 

explained by hydraulic safety (r2
P88) and hydraulic efficiency (r2

Ks). The percent residual variation in the 

safety–efficiency fit (orthogonal variation, i.e. standard major axis residuals) that is explained by the 

third variable (r2
resid) is also reported and indicates whether the third variable is a meaningful predictor 

of where species are located away from the safety–efficiency trend-line. Asterisks indicate levels of 

significance (*, P = 0.05; **, P = 0.01; ***, P = 0.001).    

 

 

 

  



 

Table S3 Standard major axis (SMA) efficiency–safety models fit to individual angiosperm and 

gymnosperm groups 

 

Angiosperms  r2  Slope  Intercept   P df 
 
All angiosperm species 0.075 -1.03 -0.20 <0.001 240 
 
Phenology  
 Evergreen 0.051 -1.00 -0.22 0.005 150  
 Winter deciduous 0.174 -0.76 -0.15 0.004 44 
 Drought deciduous 0.126 -1.64 -0.29 0.018 42 
 
Families  
 Anacardiaceae 0.659 -1.02 -0.01 0.004 8 
 Asteraceae 0.268 -1.03 -0.32 0.085 10 
  Boraginaceae 0.037 1.85 0.62 0.650 6  
 Ericaceae 0.023 -0.87 -0.33 0.699 7  
 Euphorbiaceae 0.250 -1.30 -0.15 0.069 12 
 Fabaceae 0.023 -1.17 0.02 0.514 19  
 Fagaceae 0.088 -0.53 -0.01 0.248 15  
 Proteaceae 0.087 -0.22 -0.15 0.380 9 
 Rhamnaceae 0.062 -1.00 0.44 0.462 9  
 Rosaceae 0.000 0.70 -0.19 0.983 6 
 Sapindaceae 0.178 -1.78 0.43 0.225 8 
 
Genera   
 Acer 0.286 -2.66 0.81 0.138 7 
 Ceanothus 0.135 -0.69 0.32 0.418 5  
 Cordia 0.229 1.48 0.73 0.277 5  
 Quercus 0.196 -0.41 -0.08 0.113 12 
 

 

Gymnosperms r2  Slope  Intercept   P df 
 
All gymnosperm species 0.012 -0.91 0.02 0.394 62 
 
Families  
 Cupressaceae 0.175 -1.00 0.18 0.009 36  
 Pinaceae 0.357 0.88 -0.58 0.004 23 
  
Genera   



 

 Juniperus 0.262 -0.96 0.12 0.030 16  
 Pinus 0.013 0.58 -0.58 0.725 10 
 
Species 
 Juniperus communis 0.149 1.07 -0.84 0.346 6  
 Picea abies 0.312 -4.48 1.98 0.118 7  
 Pinus ponderosa 0.731 0.88 -0.31 0.014 5  
 Pinus sylvestris 0.003 0.81 -0.50 0.845 13 
 Pseudotsuga menziesii 0.481 1.11 -0.81 0.194 3  
 

Safety is defined as the xylem water potential at which maximal conductivity declines by 12%. 

Statistically significant P-values (α = 0.05) are denoted with bold text.   

  



 

Table S4 Fit statistics for linear multiple regression models, with efficiency and safety as 

predictor variables and various structural and climatological traits as the dependent third 

variable 

 

  r2
P12 r2

Ks r2
resid df   

 
Angiosperms 
 

Wood density 0.008 0.255*** 0.116*** 160  
Leaf-area to sapwood-area 0.020 0.215*** 0.059** 141   
Maximum height 0.006 0.182*** 0.065** 119 
Predawn water potential 0.122** 0.150*** 0.001 95 
Mean annual precipitation 0.024 0.171*** 0.024* 221 
Mean annual temperature 0.064** 0.153*** 0.011 222 
Number of freezing days 0.014 0.118*** 0.026* 174 

 
Gymnospermsa  
 

Wood density 0.131* 0.191** 0.003 45 
Maximum height 0.061 0.292*** 0.060 46 
Predawn water potential 0.220 0.643** 0.006 7  
Mean annual precipitation 0.028 0.104* 0.102 34   
Mean annual temperature 0.118* 0.007 0.084 34 
Number of freezing days 0.003 0.001 0.000 34 

 

Safety is defined as the xylem water potential at which maximal conductivity declines by 12%. 

Coefficient of determination values represent the proportion of total variation in the third variable 

explained by hydraulic safety (r2
P12) and hydraulic efficiency (r2

Ks). The percent residual variation in the 

safety–efficiency fit (orthogonal variation, i.e. standard major axis residuals) that is explained by the 

third variable (r2
resid) is also reported and indicates whether the third variable is a meaningful predictor 

of where species are located away from the safety–efficiency trend-line. Asterisks indicate levels of 

significance (*, P = 0.05; **, P = 0.01; ***, P = 0.001). aThe safety-efficiency relationship for gymnosperm 

leaf-area to sapwood-area exhibited a positive slope and was omitted from the analysis.   

  



 

Table S5 Standard major axis (SMA) models fit to individual angiosperm and gymnosperm 

groups after omitting ‘r-shaped’ vulnerability curves 

 

Angiosperms  r2  Slope  Intercept   P df 
 
All angiosperm species 0.081 -1.74 0.80 <0.001 269 
 
Phenology     
 Evergreen 0.054 -1.70 0.82 0.003 160  
 Winter deciduous 0.065 -1.89 0.83 0.025 76 
 Drought deciduous 0.016 -1.85 0.71 0.494 29 
 
Families   
 Anacardiaceae 0.259 -3.32 1.51 0.162 7 
 Asteraceae 0.050 -0.93 0.20 0.593 6 
 Boraginaceae 0.056 -2.79 1.44 0.539 7 
 Ericaceae 0.473 2.07 -1.45bc 0.028 8 
 Euphorbiaceae 0.404 -1.80 0.55c 0.006 15 
 Fabaceae 0.007 -2.52 1.35 0.756 14 
 Fagaceae 0.628 -1.91 1.17b 0.004 9 
 Proteaceae 0.132 -1.38 0.52 0.271 9 
 Rhamnaceae 0.045 -2.40 2.01 0.554 8 
 Rosaceae 0.241 -2.29 1.86a 0.033 17 
 Sapindaceae 0.208 -3.22 1.50 0.159 9 
 
Genera   
 Acer 0.243 -3.59 1.73 0.148 8 
 Ceanothus 0.032 -1.41 1.21 0.701 5 
 Cordia 0.010 2.46 -0.23 0.812 6  
 Quercus 0.875 -2.37 1.48 0.002 5 
 

Safety is defined as the xylem water potential at which maximal conductivity declines by 50%. 

Statistically significant P-values (α = 0.05) are denoted with bold text.   

  



 

Table S6 Models fit after omitting exponential vulnerability curves 

 
  r2

P50 r2
Ks r2

resid df   
 
Angiosperms 
 

Wood density 0.108*** 0.166*** 0.004  152  
Leaf-area to sapwood-area 0.136*** 0.175*** 0.001 143   
Maximum height 0.024 0.151*** 0.031 115 
Predawn water potential 0.282*** 0.183*** 0.006 102 
Mean annual precipitation 0.128*** 0.116*** 0.000 249 
Mean annual temperature 0.075*** 0.028* 0.006 249 
Number of freezing days 0.058** 0.046* 0.003 168 

 

Fit statistics for linear multiple regression models, with efficiency and safety as predictor variables and 

various structural and climatological traits as the dependent third variable. Safety is defined as the 

xylem water potential at which maximal conductivity declines by 50%. Coefficient of determination 

values represent the proportion of total variation in the third variable explained by hydraulic safety 

(r2
P50) and hydraulic efficiency (r2

Ks). The percent residual variation in the efficiency–safety fit 

(orthogonal variation, i.e. standard major axis residuals) that is explained by the third variable (r2
resid) is 

also reported and indicates whether the third variable is a meaningful predictor of where species are 

located away from the efficiency–safety trend-line. Asterisks indicate levels of significance (*, P = 0.05; 

**, P = 0.01; ***, P = 0.001). 

 

 

  



 

Notes S1 Published references from which data were extracted for analyses.  

 

Includes all angiosperm and gymnosperm species (branch xylem) where both efficiency (KS) and 

safety (P50) data were reported. Observations where efficiency measurements exceeded 40 kg 

m-1 s-1 MPa-1 were assumed in error and omitted.    
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